BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22528193)

  • 1. Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance.
    Pletikapić G; Žutić V; Vinković Vrček I; Svetličić V
    J Mol Recognit; 2012 May; 25(5):309-17. PubMed ID: 22528193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & J.C. Lewin.
    Pletikapić G; Radić TM; Zimmermann AH; Svetličić V; Pfannkuchen M; Marić D; Godrijan J; Zutić V
    J Mol Recognit; 2011; 24(3):436-45. PubMed ID: 21504021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis.
    Dimkpa CO; Calder A; Gajjar P; Merugu S; Huang W; Britt DW; McLean JE; Johnson WP; Anderson AJ
    J Hazard Mater; 2011 Apr; 188(1-3):428-35. PubMed ID: 21339046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of silver nanoparticles on wastewater biofilms.
    Sheng Z; Liu Y
    Water Res; 2011 Nov; 45(18):6039-50. PubMed ID: 21940033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances.
    Miao AJ; Schwehr KA; Xu C; Zhang SJ; Luo Z; Quigg A; Santschi PH
    Environ Pollut; 2009 Nov; 157(11):3034-41. PubMed ID: 19560243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the role of cell hydrophobicity and EPS production in the aggregation of the marine diatom Cylindrotheca closterium under hypo-saline conditions.
    Demir-Yilmaz I; Novosel N; Levak Zorinc M; Mišić Radić T; Ftouhi MS; Guiraud P; Ivošević DeNardis N; Formosa-Dague C
    Mar Environ Res; 2023 Jun; 188():106020. PubMed ID: 37187087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6.
    Calder AJ; Dimkpa CO; McLean JE; Britt DW; Johnson W; Anderson AJ
    Sci Total Environ; 2012 Jul; 429():215-22. PubMed ID: 22591989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae.
    Schiavo S; Duroudier N; Bilbao E; Mikolaczyk M; Schäfer J; Cajaraville MP; Manzo S
    Sci Total Environ; 2017 Jan; 577():45-53. PubMed ID: 27751687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas.
    Chen R; Nuhfer NT; Moussa L; Morris HR; Whitmore PM
    Nanotechnology; 2008 Nov; 19(45):455604. PubMed ID: 21832781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers.
    Gao S; Yuan D; Lü J; Cao R
    J Colloid Interface Sci; 2010 Jan; 341(2):320-5. PubMed ID: 19854446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling gene cascade in silver nanoparticle induced apoptosis.
    Gopinath P; Gogoi SK; Sanpui P; Paul A; Chattopadhyay A; Ghosh SS
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):240-5. PubMed ID: 20197232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.
    Martinolich AJ; Park G; Nakamoto MY; Gate RE; Wheeler KE
    Environ Sci Technol; 2012 Jun; 46(11):6355-62. PubMed ID: 22563882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.
    Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S
    Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine polysaccharide networks and diatoms at the nanometric scale.
    Svetličić V; Zutić V; Pletikapić G; Radić TM
    Int J Mol Sci; 2013 Oct; 14(10):20064-78. PubMed ID: 24113585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer networks produced by marine diatoms in the northern Adriatic sea.
    Svetličić V; Žutić V; Radić TM; Pletikapić G; Zimmermann AH; Urbani R
    Mar Drugs; 2011; 9(4):666-679. PubMed ID: 21731556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical solid-state phase transformations of silver nanoparticles.
    Singh P; Parent KL; Buttry DA
    J Am Chem Soc; 2012 Mar; 134(12):5610-7. PubMed ID: 22385520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells.
    Trickler WJ; Lantz SM; Murdock RC; Schrand AM; Robinson BL; Newport GD; Schlager JJ; Oldenburg SJ; Paule MG; Slikker W; Hussain SM; Ali SF
    Toxicol Sci; 2010 Nov; 118(1):160-70. PubMed ID: 20713472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.