BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22528359)

  • 1. Derivation, propagation, and characterization of neuroprogenitors from pluripotent stem cells (hESCs and hiPSCs).
    Lie KH; Chung HC; Sidhu KS
    Methods Mol Biol; 2012; 873():237-46. PubMed ID: 22528359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed neuronal differentiation of human embryonic stem cells.
    Schulz TC; Palmarini GM; Noggle SA; Weiler DA; Mitalipova MM; Condie BG
    BMC Neurosci; 2003 Oct; 4():27. PubMed ID: 14572319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells.
    Mollamohammadi S; Taei A; Pakzad M; Totonchi M; Seifinejad A; Masoudi N; Baharvand H
    Hum Reprod; 2009 Oct; 24(10):2468-76. PubMed ID: 19602515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro neural differentiation of human embryonic stem cells using a low-density mouse embryonic fibroblast feeder protocol.
    Ozolek JA; Jane EP; Esplen JE; Petrosko P; Wehn AK; Erb TM; Mucko SE; Cote LC; Sammak PJ
    Methods Mol Biol; 2010; 584():71-95. PubMed ID: 19907972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro differentiation of neural precursors from human embryonic stem cells.
    Li XJ; Zhang SC
    Methods Mol Biol; 2006; 331():169-77. PubMed ID: 16881517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of neural differentiation potential of human pluripotent stem cell lines using a quantitative neural differentiation protocol.
    Yin D; Tavakoli T; Gao WQ; Ma W
    Methods Mol Biol; 2012; 873():247-59. PubMed ID: 22528360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes.
    Stewart R; Christie VB; Przyborski SA
    Stem Cells; 2003; 21(3):248-56. PubMed ID: 12743319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of cerebellar neurons from human pluripotent stem cells.
    Erceg S; Lukovic D; Moreno-Manzano V; Stojkovic M; Bhattacharya SS
    Curr Protoc Stem Cell Biol; 2012 Mar; Chapter 1():Unit 1H.5. PubMed ID: 22415839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells.
    Axell MZ; Zlateva S; Curtis M
    J Neurosci Methods; 2009 Nov; 184(2):275-84. PubMed ID: 19715727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of neural precursors from human embryonic stem cells in the presence of noggin.
    Itsykson P; Ilouz N; Turetsky T; Goldstein RS; Pera MF; Fishbein I; Segal M; Reubinoff BE
    Mol Cell Neurosci; 2005 Sep; 30(1):24-36. PubMed ID: 16081300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates.
    Abraham S; Sheridan SD; Miller B; Rao RR
    Biotechnol Prog; 2010; 26(4):1126-34. PubMed ID: 20730767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient derivation of human neuronal progenitors and neurons from pluripotent human embryonic stem cells with small molecule induction.
    Parsons XH; Teng YD; Parsons JF; Snyder EY; Smotrich DB; Moore DA
    J Vis Exp; 2011 Oct; (56):e3273. PubMed ID: 22064669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures.
    Dhara SK; Hasneen K; Machacek DW; Boyd NL; Rao RR; Stice SL
    Differentiation; 2008 May; 76(5):454-64. PubMed ID: 18177420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells.
    Bardy J; Chen AK; Lim YM; Wu S; Wei S; Weiping H; Chan K; Reuveny S; Oh SK
    Tissue Eng Part C Methods; 2013 Feb; 19(2):166-80. PubMed ID: 22834957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serum-free and feeder-free culture expansion of human embryonic stem cells.
    Wagner KE; Vemuri MC
    Methods Mol Biol; 2010; 584():109-19. PubMed ID: 19907974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
    Ausubel LJ; Lopez PM; Couture LA
    Methods Mol Biol; 2011; 767():147-59. PubMed ID: 21822873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.
    Schulz TC; Noggle SA; Palmarini GM; Weiler DA; Lyons IG; Pensa KA; Meedeniya AC; Davidson BP; Lambert NA; Condie BG
    Stem Cells; 2004; 22(7):1218-38. PubMed ID: 15579641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for efficiently generating neurospheres from human-induced pluripotent stem cells using microsphere arrays.
    Shofuda T; Fukusumi H; Kanematsu D; Yamamoto A; Yamasaki M; Arita N; Kanemura Y
    Neuroreport; 2013 Jan; 24(2):84-90. PubMed ID: 23238165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural differentiation from human embryonic stem cells in a defined adherent culture condition.
    Baharvand H; Mehrjardi NZ; Hatami M; Kiani S; Rao M; Haghighi MM
    Int J Dev Biol; 2007; 51(5):371-8. PubMed ID: 17616926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic differentiation of human pluripotent cells.
    Boyer LF; Campbell B; Larkin S; Mu Y; Gage FH
    Curr Protoc Stem Cell Biol; 2012 Aug; Chapter 1():Unit1H.6. PubMed ID: 22872424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.