These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 22528409)
1. Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls. Zhao C; Yang C Electrophoresis; 2012 Mar; 33(6):899-980. PubMed ID: 22528409 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Yan D; Yang C; Miao J; Lam Y; Huang X Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063 [TBL] [Abstract][Full Text] [Related]
3. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method. Shao C; Devoe DL Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435 [TBL] [Abstract][Full Text] [Related]
4. Quantification of electrical field-induced flow reversal in a microchannel. Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916 [TBL] [Abstract][Full Text] [Related]
5. A novel particle separation method based on induced-charge electro-osmotic flow and polarizability of dielectric particles. Zhang F; Li D Electrophoresis; 2014 Oct; 35(20):2922-9. PubMed ID: 25043290 [TBL] [Abstract][Full Text] [Related]
6. Effect of patterned slip on micro- and nanofluidic flows. Hendy SC; Jasperse M; Burnell J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016303. PubMed ID: 16090082 [TBL] [Abstract][Full Text] [Related]
7. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Zhao C; Yang C Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874 [TBL] [Abstract][Full Text] [Related]
8. Electro-osmotic flow in polygonal ducts. Wang CY; Chang CC Electrophoresis; 2011 Jun; 32(11):1268-72. PubMed ID: 21538403 [TBL] [Abstract][Full Text] [Related]
9. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls. Alizadeh A; Zhang L; Wang M J Colloid Interface Sci; 2014 Oct; 431():50-63. PubMed ID: 24984071 [TBL] [Abstract][Full Text] [Related]
10. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias. Islam N; Reyna J Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322 [TBL] [Abstract][Full Text] [Related]
11. Analysis of traveling-wave electro-osmotic pumping with double-sided electrode arrays. Yeh HC; Yang RJ; Luo WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056326. PubMed ID: 21728666 [TBL] [Abstract][Full Text] [Related]
12. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
13. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Zhao C; Yang C Electrophoresis; 2011 Feb; 32(5):629-37. PubMed ID: 21290390 [TBL] [Abstract][Full Text] [Related]
14. Recursive estimation of transient inhomogeneous zeta potential in microchannel turns using velocity measurements. Park HM; Kim TW Biomed Microdevices; 2009 Feb; 11(1):231-41. PubMed ID: 18807196 [TBL] [Abstract][Full Text] [Related]
15. Electroosmotic flow through a microparallel channel with 3D wall roughness. Chang L; Jian Y; Buren M; Sun Y Electrophoresis; 2016 Feb; 37(3):482-92. PubMed ID: 26333852 [TBL] [Abstract][Full Text] [Related]
17. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure. Hou HH; Tsai CH; Fu LM; Yang RJ Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570 [TBL] [Abstract][Full Text] [Related]
18. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Sridharan S; Zhu J; Hu G; Xuan X Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988 [TBL] [Abstract][Full Text] [Related]
19. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices. Chakraborty J; Ray S; Chakraborty S Electrophoresis; 2012 Feb; 33(3):419-25. PubMed ID: 22212910 [TBL] [Abstract][Full Text] [Related]
20. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]