BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22528414)

  • 21. Methods for determination of all binding parameters in systems with simultaneous borate and cyclodextrin complexation.
    Svobodová J; Dubský P; Tesařová E; Beneš M; Gaš B
    J Chromatogr A; 2011 Oct; 1218(40):7211-8. PubMed ID: 21871626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and optimization of the chiral selectivity of basic analytes in chiral capillary electrophoresis with negatively charged cyclodextrins using electrochemical detection.
    Yang WC; Yu AM; Yu XD; Chen HY
    Electrophoresis; 2001 Jun; 22(10):2025-31. PubMed ID: 11465502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative description of analyte migration behavior based on dynamic complexation in capillary electrophoresis with one or more additives.
    Peng X; Bowser MT; Britz-McKibbin P; Bebault GM; Morris JR; Chen DD
    Electrophoresis; 1997 May; 18(5):706-16. PubMed ID: 9194595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer simulation on a continuous moving chelation boundary in ethylenediaminetetraacetic acid-based sample sweeping in capillary electrophoresis.
    Jin J; Shao J; Li S; Zhang W; Fan LY; Cao CX
    J Chromatogr A; 2009 Jun; 1216(24):4913-22. PubMed ID: 19439312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonequilibrium capillary electrophoresis of equilibrium mixtures, mathematical model.
    Okhonin V; Krylova SM; Krylov SN
    Anal Chem; 2004 Mar; 76(5):1507-12. PubMed ID: 14987110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part I. Theory.
    Dubský P; Müllerová L; Dvořák M; Gaš B
    J Chromatogr A; 2015 Mar; 1384():142-6. PubMed ID: 25637010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis.
    Cucinotta V; Contino A; Giuffrida A; Maccarrone G; Messina M
    J Chromatogr A; 2010 Feb; 1217(7):953-67. PubMed ID: 20022327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of complexation additives on analyte migration behavior in capillary electrochromatography.
    Bowser MT; Chen DD
    Electrophoresis; 1998 Jun; 19(8-9):1452-60. PubMed ID: 9694295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model of CE enantioseparation systems with a mixture of chiral selectors. Part I. Theory of migration and interconversion.
    Dubský P; Svobodová J; Gas B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(1):30-4. PubMed ID: 18701358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the cis-trans isomerization barrier of several L-peptidyl-L-proline dipeptides by dynamic capillary electrophoresis and computer simulation.
    Schoetz G; Trapp O; Schurig V
    Electrophoresis; 2001 Aug; 22(12):2409-15. PubMed ID: 11519944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis.
    Le Saux T; Varenne A; Gareil P
    Electrophoresis; 2005 Aug; 26(16):3094-104. PubMed ID: 16041707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model and verification of electrokinetic flow and transport in a micro-electrophoresis device.
    Barz DP; Ehrhard P
    Lab Chip; 2005 Sep; 5(9):949-58. PubMed ID: 16100579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Higher order equilibria and their effect on analyte migration behavior in capillary electrophoresis.
    Bowser MT; Chen DD
    Anal Chem; 1998 Aug; 70(15):3261-70. PubMed ID: 21644662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of a mixture of charged and neutral additives on analyte migration behavior in capillary electrophoresis.
    Kranack AR; Bowser MT; Britz-McKibbin P; Chen DD
    Electrophoresis; 1998 Mar; 19(3):388-96. PubMed ID: 9551790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust and high-resolution simulations of nonlinear electrokinetic processes in variable cross-section channels.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2012 Oct; 33(19-20):3036-51. PubMed ID: 22996734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of stability constants of complexes of neutral analytes with charged cyclodextrins by affinity capillary electrophoresis.
    Beneš M; Zusková I; Svobodová J; Gaš B
    Electrophoresis; 2012 Mar; 33(6):1032-9. PubMed ID: 22528423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pKa shift-associated effects in enantioseparations by cyclodextrin-mediated capillary zone electrophoresis.
    Rizzi AM; Kremser L
    Electrophoresis; 1999 Sep; 20(13):2715-22. PubMed ID: 10532339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulation of affinity capillary electrophoresis.
    Andreev VP; Pliss NS; Righetti PG
    Electrophoresis; 2002 Mar; 23(6):889-95. PubMed ID: 11920873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High speed electrophoresis simulation for optimization of continuous flow electrophoresis and high performance capillary techniques: Part I. Computer model.
    Heinrich J; Wagner H
    Electrophoresis; 1992; 13(1-2):44-9. PubMed ID: 1587253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enantiomeric impurity determination in capillary electrophoresis using a highly-sulfated cyclodextrins-based method.
    Matthijs N; Vander Heyden Y
    Biomed Chromatogr; 2006 Aug; 20(8):696-709. PubMed ID: 16240285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.