BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22528655)

  • 21. Production of cellulase-free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp.
    Sindhu I; Chhibber S; Capalash N; Sharma P
    Curr Microbiol; 2006 Aug; 53(2):167-72. PubMed ID: 16832724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation.
    Nagar S; Mittal A; Kumar D; Kumar L; Kuhad RC; Gupta VK
    N Biotechnol; 2011 Oct; 28(6):581-7. PubMed ID: 21232646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and partial characterization of cellulase free xylanase by Bacillus subtilis C 01 using agriresidues and its application in biobleaching of nonwoody plant pulps.
    Ayyachamy M; Vatsala TM
    Lett Appl Microbiol; 2007 Nov; 45(5):467-72. PubMed ID: 17868314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S.
    Nagar S; Jain RK; Thakur VV; Gupta VK
    3 Biotech; 2013 Aug; 3(4):277-285. PubMed ID: 28324585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation.
    Yang SQ; Yan QJ; Jiang ZQ; Li LT; Tian HM; Wang YZ
    Bioresour Technol; 2006 Oct; 97(15):1794-800. PubMed ID: 16230011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp.
    Li XT; Jiang ZQ; Li LT; Yang SQ; Feng WY; Fan JY; Kusakabe I
    Bioresour Technol; 2005 Aug; 96(12):1370-9. PubMed ID: 15792585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of a recombinant xylanase in plants and its potential for pulp biobleaching applications.
    Bae HJ; Kim HJ; Kim YS
    Bioresour Technol; 2008 Jun; 99(9):3513-9. PubMed ID: 17889523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application.
    Pandya JJ; Gupte A
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):769-79. PubMed ID: 22271252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkaliphilic endoxylanase from lignocellulolytic microbial consortium metagenome for biobleaching of eucalyptus pulp.
    Weerachavangkul C; Laothanachareon T; Boonyapakron K; Wongwilaiwalin S; Nimchua T; Eurwilaichitr L; Pootanakit K; Igarashi Y; Champreda V
    J Microbiol Biotechnol; 2012 Dec; 22(12):1636-43. PubMed ID: 23221525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling.
    Asha Poorna C; Prema P
    Bioresour Technol; 2007 Feb; 98(3):485-90. PubMed ID: 16844369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02.
    Sharma KK; Kapoor M; Kuhad RC
    Lett Appl Microbiol; 2005; 41(1):24-31. PubMed ID: 15960748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of thermo and alkali stable xylanases from Thielaviopsis basicola (MTCC-1467) in biobleaching of wood kraft pulp.
    Goluguri BR; Thulluri C; Cherupally M; Nidadavolu N; Achuthananda D; Mangamuri LN; Addepally U
    Appl Biochem Biotechnol; 2012 Aug; 167(8):2369-80. PubMed ID: 22717769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of extracellular xylanase production by Sclerotinia sclerotiorum S2 using factorial design.
    Ellouze O; Fattouch S; Mestiri F; Aniba MR; Marzouki MN
    Indian J Biochem Biophys; 2008 Dec; 45(6):404-9. PubMed ID: 19239127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus.
    Paƫs G; O'Donohue MJ
    J Biotechnol; 2006 Sep; 125(3):338-50. PubMed ID: 16644050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens.
    Sun X; Liu Z; Qu Y; Li X
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):119-28. PubMed ID: 18421592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave pretreatment of substrates for cellulase production by solid-state fermentation.
    Zhao X; Zhou Y; Zheng G; Liu D
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1557-71. PubMed ID: 19452284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using both xylanase and laccase enzymes for pulp bleaching.
    Valls C; Roncero MB
    Bioresour Technol; 2009 Mar; 100(6):2032-9. PubMed ID: 19038541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation.
    Kavya V; Padmavathi T
    Pol J Microbiol; 2009; 58(2):125-30. PubMed ID: 19824396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing the efficiency and functionality of xylanase from Bacillus sp. RTS11: Optimization, purification, characterization, and prospects in kraft pulp bleaching.
    Sahnoun S; Yahiaoui B; Benlounissi A; Mouffok A; Ernst B; Alam M; Houali K; Benguerba Y
    Cell Mol Biol (Noisy-le-grand); 2024 Jan; 70(1):67-79. PubMed ID: 38372111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash.
    Mohana S; Shah A; Divecha J; Madamwar D
    Bioresour Technol; 2008 Nov; 99(16):7553-64. PubMed ID: 18374565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.