BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22528762)

  • 1. Size-controlled fabrication of polydiacetylene-embedded microfibers on a microfluidic chip.
    Yoo I; Song S; Yoon B; Kim JM
    Macromol Rapid Commun; 2012 Aug; 33(15):1256-61. PubMed ID: 22528762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Magnetically Responsive Polydiacetylene Precursor for Latent Fingerprint Analysis.
    Lee J; Lee CW; Kim JM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6245-51. PubMed ID: 26895283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydiacetylene-based electrospun fibers for detection of HCl gas.
    Jeon H; Lee J; Kim MH; Yoon J
    Macromol Rapid Commun; 2012 Jun; 33(11):972-6. PubMed ID: 22492472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization, and sensing behavior of polydiacetylene liposomes embedded in alginate fibers.
    Kauffman JS; Ellerbrock BM; Stevens KA; Brown PJ; Pennington WT; Hanks TW
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1287-91. PubMed ID: 20355925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors.
    Yoon B; Shin H; Kang EM; Cho DW; Shin K; Chung H; Lee CW; Kim JM
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4527-35. PubMed ID: 23469803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermochromism and supramolecular chirality of the coumarin-substituted polydiacetylene LB films.
    Xu Y; Li J; Hu W; Zou G; Zhang Q
    J Colloid Interface Sci; 2013 Jun; 400():116-22. PubMed ID: 23562172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon polymerization of polydiacetylene.
    Shusterman O; Berman A; Golan Y; Horovitz B; Zeiri L
    J Phys Chem B; 2009 Feb; 113(5):1273-6. PubMed ID: 19175340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and alignment of discrete polydiacetylene-peptide nanostructures.
    Diegelmann SR; Hartman N; Markovic N; Tovar JD
    J Am Chem Soc; 2012 Feb; 134(4):2028-31. PubMed ID: 22239459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of polydiacetylene immobilized optically encoded beads.
    Jun BH; Baek J; Kang H; Park YJ; Jeong DH; Lee YS
    J Colloid Interface Sci; 2011 Mar; 355(1):29-34. PubMed ID: 21194704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymersomes containing a hydrogel network for high stability and controlled release.
    Kim SH; Kim JW; Kim DH; Han SH; Weitz DA
    Small; 2013 Jan; 9(1):124-31. PubMed ID: 22961742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of alginate microfibers with a roller-assisted microfluidic system.
    Su J; Zheng Y; Wu H
    Lab Chip; 2009 Apr; 9(7):996-1001. PubMed ID: 19294313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic biosensor for detection of phosphinothricin acetyltransferase by use of polydiacetylene vesicles encapsulated within automatically generated immunohydrogel beads.
    Jung SH; Jang H; Lim MC; Kim JH; Shin KS; Kim SM; Kim HY; Kim YR; Jeon TJ
    Anal Chem; 2015 Feb; 87(4):2072-8. PubMed ID: 25615891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "On the fly" continuous generation of alginate fibers using a microfluidic device.
    Shin SJ; Park JY; Lee JY; Park H; Park YD; Lee KB; Whang CM; Lee SH
    Langmuir; 2007 Aug; 23(17):9104-8. PubMed ID: 17637008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman microspectroscopic study on polymerization and degradation processes of a diacetylene derivative at surface enhanced Raman scattering active substrates. 2. Confocal Raman microscopic observation of polydiacetylene adsorbed on active sites.
    Itoh K; Kudryashov I; Yamagata J; Nishizawa T; Fujii M; Osaka N
    J Phys Chem B; 2005 Jan; 109(1):271-6. PubMed ID: 16851013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydiacetylene vesicles functionalized with N-heterocyclic ligands for metal cation binding.
    Jose DA; König B
    Org Biomol Chem; 2010 Feb; 8(3):655-62. PubMed ID: 20090984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organization of a polymerizable bolaamphiphile bearing a diacetylene group and L-aspartic acid group.
    Yin S; Wang C; Song B; Chen S; Wang Z
    Langmuir; 2009 Aug; 25(16):8968-73. PubMed ID: 19334690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(diiododiacetylene): preparation, isolation, and full characterization of a very simple poly(diacetylene).
    Luo L; Wilhelm C; Sun A; Grey CP; Lauher JW; Goroff NS
    J Am Chem Soc; 2008 Jun; 130(24):7702-9. PubMed ID: 18489101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatic polydiacetylene with novel sensitivity.
    Sun X; Chen T; Huang S; Li L; Peng H
    Chem Soc Rev; 2010 Nov; 39(11):4244-57. PubMed ID: 20877863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the diacetylene position on the chromatic properties of polydiacetylenes from self-assembled peptide amphiphiles.
    van den Heuvel M; Löwik DW; van Hest JC
    Biomacromolecules; 2010 Jun; 11(6):1676-83. PubMed ID: 20499861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.