These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22529331)

  • 21. Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure.
    Lewis DP; Jebara T; Noble WS
    Bioinformatics; 2006 Nov; 22(22):2753-60. PubMed ID: 16966363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Protein structural class prediction with binary tree-based support vector machines].
    Zhang T; Ding Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):921-4. PubMed ID: 18788309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Prediction of protein solvent accessibility with Markov chain model].
    Wang M; Li A; Wang X; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1109-13. PubMed ID: 17121365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress and challenges in predicting protein interfaces.
    Esmaielbeiki R; Krawczyk K; Knapp B; Nebel JC; Deane CM
    Brief Bioinform; 2016 Jan; 17(1):117-31. PubMed ID: 25971595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RBRIdent: An algorithm for improved identification of RNA-binding residues in proteins from primary sequences.
    Xiong D; Zeng J; Gong H
    Proteins; 2015 Jun; 83(6):1068-77. PubMed ID: 25846271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying protein-protein interfacial residues in heterocomplexes using residue conservation scores.
    Li JJ; Huang DS; Wang B; Chen P
    Int J Biol Macromol; 2006 May; 38(3-5):241-7. PubMed ID: 16600360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines.
    Lin HH; Hsu JC; Hsu YN; Pan RH; Chen YF; Tseng LY
    Comput Biol Med; 2013 Nov; 43(11):1941-8. PubMed ID: 24209939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review and comparative assessment of sequence-based predictors of protein-binding residues.
    Zhang J; Kurgan L
    Brief Bioinform; 2018 Sep; 19(5):821-837. PubMed ID: 28334258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sparse Markov chain-based semi-supervised multi-instance multi-label method for protein function prediction.
    Han C; Chen J; Wu Q; Mu S; Min H
    J Bioinform Comput Biol; 2015 Oct; 13(5):1543001. PubMed ID: 26493682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of methods for the detection of outliers and associated biomarkers in mislabeled omics data.
    Sun H; Cui Y; Wang H; Liu H; Wang T
    BMC Bioinformatics; 2020 Aug; 21(1):357. PubMed ID: 32795265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information.
    Ma X; Guo J; Liu HD; Xie JM; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequence-based prediction of protein-protein interaction sites with L1-logreg classifier.
    Dhole K; Singh G; Pai PP; Mondal S
    J Theor Biol; 2014 May; 348():47-54. PubMed ID: 24486250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PAIRpred: partner-specific prediction of interacting residues from sequence and structure.
    Minhas Fu; Geiss BJ; Ben-Hur A
    Proteins; 2014 Jul; 82(7):1142-55. PubMed ID: 24243399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of protein-protein interaction sites using patch-based residue characterization.
    Qiu Z; Wang X
    J Theor Biol; 2012 Jan; 293():143-50. PubMed ID: 22037062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.
    Li X; Liu T; Tao P; Wang C; Chen L
    Comput Biol Chem; 2015 Dec; 59 Pt A():95-100. PubMed ID: 26460680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein remote homology detection based on auto-cross covariance transformation.
    Liu X; Zhao L; Dong Q
    Comput Biol Med; 2011 Aug; 41(8):640-7. PubMed ID: 21664609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.
    Liang S; Zhang J; Zhang S; Guo H
    Proteins; 2004 Nov; 57(3):548-57. PubMed ID: 15382230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distributed One-Class Support Vector Machine.
    Castillo E; Peteiro-Barral D; BerdiƱas BG; Fontenla-Romero O
    Int J Neural Syst; 2015 Nov; 25(7):1550029. PubMed ID: 26173907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting metal-binding sites from protein sequence.
    Passerini A; Lippi M; Frasconi P
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):203-13. PubMed ID: 21606549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.