These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22529345)

  • 21. Reconciling the understanding of 'hydrophobicity' with physics-based models of proteins.
    Harris RC; Pettitt BM
    J Phys Condens Matter; 2016 Mar; 28(8):083003. PubMed ID: 26836518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water coordination structures and the excess free energy of the liquid.
    Merchant S; Shah JK; Asthagiri D
    J Chem Phys; 2011 Mar; 134(12):124514. PubMed ID: 21456683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models.
    Sharp KA; Nicholls A; Friedman R; Honig B
    Biochemistry; 1991 Oct; 30(40):9686-97. PubMed ID: 1911756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of solubilization of immiscible solutes by a micelle: Free energy of transfer of alkanes from water to the micelle core by thermodynamic integration method.
    Fujimoto K; Yoshii N; Okazaki S
    J Chem Phys; 2010 Aug; 133(7):074511. PubMed ID: 20726656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of scaled particle theory to model the hydrophobic effect: implications for molecular association and protein stability.
    Jackson RM; Sternberg MJ
    Protein Eng; 1994 Mar; 7(3):371-83. PubMed ID: 8177886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the concentration scale in the definition of transfer free energies.
    Moeser B; Horinek D
    Biophys Chem; 2015 Jan; 196():68-76. PubMed ID: 25451680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential of mean force between hydrophobic solutes in the Jagla model of water and implications for cold denaturation of proteins.
    Maiti M; Weiner S; Buldyrev SV; Stanley HE; Sastry S
    J Chem Phys; 2012 Jan; 136(4):044512. PubMed ID: 22299896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enthalpy-entropy contributions to the potential of mean force of nanoscopic hydrophobic solutes.
    Choudhury N; Pettitt BM
    J Phys Chem B; 2006 Apr; 110(16):8459-63. PubMed ID: 16623532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophobic hydration processes thermal and chemical denaturation of proteins.
    Fisicaro E; Compari C; Braibanti A
    Biophys Chem; 2011 Jun; 156(1):51-67. PubMed ID: 21482019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An accurate and efficient computation method of the hydration free energy of a large, complex molecule.
    Yoshidome T; Ekimoto T; Matubayasi N; Harano Y; Kinoshita M; Ikeguchi M
    J Chem Phys; 2015 May; 142(17):175101. PubMed ID: 25956125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide backbone effect on hydration free energies of amino acid side chains.
    Hajari T; van der Vegt NF
    J Phys Chem B; 2014 Nov; 118(46):13162-8. PubMed ID: 25338222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. 1. Approximate expression for the free energy of hydrophobic association based on a Gaussian-overlap model.
    Makowski M; Liwo A; Scheraga HA
    J Phys Chem B; 2007 Mar; 111(11):2910-6. PubMed ID: 17388416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method.
    Su JT; Duncan PB; Momaya A; Jutila A; Needham D
    J Chem Phys; 2010 Jan; 132(4):044506. PubMed ID: 20113048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water.
    Raschke TM; Tsai J; Levitt M
    Proc Natl Acad Sci U S A; 2001 May; 98(11):5965-9. PubMed ID: 11353861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models.
    Dzubiella J; Swanson JM; McCammon JA
    Phys Rev Lett; 2006 Mar; 96(8):087802. PubMed ID: 16606226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins.
    Sarupria S; Garde S
    Phys Rev Lett; 2009 Jul; 103(3):037803. PubMed ID: 19659321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions.
    Remsing RC; Patel AJ
    J Chem Phys; 2015 Jan; 142(2):024502. PubMed ID: 25591367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydration of Linear Alkanes is Governed by the Small Length-Scale Hydrophobic Effect.
    Singh H; Sharma S
    J Chem Theory Comput; 2022 Jun; 18(6):3805-3813. PubMed ID: 35648114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why Computed Protein Folding Landscapes Are Sensitive to the Water Model.
    Anandakrishnan R; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Jan; 15(1):625-636. PubMed ID: 30514080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.