BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22529778)

  • 1. Restoration of the striatal circuitry: from developmental aspects toward clinical applications.
    Pauly MC; Piroth T; Döbrössy M; Nikkhah G
    Front Cell Neurosci; 2012; 6():16. PubMed ID: 22529778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum.
    Olsson M; Bentlage C; Wictorin K; Campbell K; Björklund A
    Neuroscience; 1997 Jul; 79(1):57-78. PubMed ID: 9178865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.
    Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD
    Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic development of the human embryonic striatal primordium: a study of cultured and grafted neurons from the lateral and medial ganglionic eminences.
    Grasbon-Frodl EM; Nakao N; Lindvall O; Brundin P
    Neuroscience; 1996 Jul; 73(1):171-83. PubMed ID: 8783240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Replacement Therapy for Huntington's Disease.
    Monk R; Connor B
    Adv Exp Med Biol; 2020; 1266():57-69. PubMed ID: 33105495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic neurons from mouse embryonic stem cells possess functional properties of striatal neurons in vitro, and develop into striatal neurons in vivo in a mouse model of Huntington's disease.
    Shin E; Palmer MJ; Li M; Fricker RA
    Stem Cell Rev Rep; 2012 Jun; 8(2):513-31. PubMed ID: 21720791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits.
    Nakao N; Itakura T
    Prog Neurobiol; 2000 Jun; 61(3):313-38. PubMed ID: 10727778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to make striatal projection neurons.
    Fjodorova M; Noakes Z; Li M
    Neurogenesis (Austin); 2015; 2(1):e1100227. PubMed ID: 27606330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington's disease.
    Peschanski M; Cesaro P; Hantraye P
    Neuroscience; 1995 Sep; 68(2):273-85. PubMed ID: 7477940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human striatum remodelling after neurotransplantation in Huntington's disease.
    Gallina P; Paganini M; Biggeri A; Marini M; Romoli A; Sarchielli E; Berti V; Ghelli E; Guido C; Lombardini L; Mazzanti B; Simonelli P; Peri A; Maggi M; Porfirio B; Di Lorenzo N; Vannelli GB
    Stereotact Funct Neurosurg; 2014; 92(4):211-7. PubMed ID: 25096235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural transplantation: restoring complex circuitry in the striatum.
    Fricker-Gates RA; Lundberg C; Dunnett SB
    Restor Neurol Neurosci; 2001; 19(1-2):119-38. PubMed ID: 12082233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation.
    Capetian P; Knoth R; Maciaczyk J; Pantazis G; Ditter M; Bokla L; Landwehrmeyer GB; Volk B; Nikkhah G
    Neuroscience; 2009 May; 160(3):661-75. PubMed ID: 19254752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence.
    Olsson M; Campbell K; Wictorin K; Björklund A
    Neuroscience; 1995 Dec; 69(4):1169-82. PubMed ID: 8848105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety of intrastriatal neurotransplantation for Huntington's disease patients.
    Kopyov OV; Jacques S; Lieberman A; Duma CM; Eagle KS
    Exp Neurol; 1998 Jan; 149(1):97-108. PubMed ID: 9454619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing striatal phenotypes for transplantation in Huntington's disease.
    Precious SV; Rosser AE
    Exp Biol Med (Maywood); 2012 Apr; 237(4):343-51. PubMed ID: 22490511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multitract microtransplantation increases the yield of DARPP-32-positive embryonic striatal cells in a rodent model of Huntington's disease.
    Jiang W; Büchele F; Papazoglou A; Döbrössy M; Nikkhah G
    Cell Transplant; 2011; 20(10):1515-27. PubMed ID: 21176402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unilateral transplantation of human primary fetal tissue in four patients with Huntington's disease: NEST-UK safety report ISRCTN no 36485475.
    Rosser AE; Barker RA; Harrower T; Watts C; Farrington M; Ho AK; Burnstein RM; Menon DK; Gillard JH; Pickard J; Dunnett SB;
    J Neurol Neurosurg Psychiatry; 2002 Dec; 73(6):678-85. PubMed ID: 12438470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntington's disease.
    Nakao N; Ogura M; Nakai K; Itakura T
    Neuroscience; 1999 Jan; 88(2):469-77. PubMed ID: 10197767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.