These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22529937)
1. RNA-seq analysis reveals that an ECF σ factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a. Greenwald JW; Greenwald CJ; Philmus BJ; Begley TP; Gross DC PLoS One; 2012; 7(4):e34804. PubMed ID: 22529937 [TBL] [Abstract][Full Text] [Related]
2. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. Berti AD; Thomas MG J Bacteriol; 2009 Jul; 191(14):4594-604. PubMed ID: 19482931 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. Yu X; Lund SP; Greenwald JW; Records AH; Scott RA; Nettleton D; Lindow SE; Gross DC; Beattie GA mBio; 2014 Sep; 5(5):e01683-14. PubMed ID: 25182327 [TBL] [Abstract][Full Text] [Related]
4. Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. Owen JG; Ackerley DF BMC Microbiol; 2011 Oct; 11():218. PubMed ID: 21967163 [TBL] [Abstract][Full Text] [Related]
5. Characterization of five ECF sigma factors in the genome of Pseudomonas syringae pv. syringae B728a. Thakur PB; Vaughn-Diaz VL; Greenwald JW; Gross DC PLoS One; 2013; 8(3):e58846. PubMed ID: 23516563 [TBL] [Abstract][Full Text] [Related]
6. AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000. Markel E; Stodghill P; Bao Z; Myers CR; Swingle B J Bacteriol; 2016 Sep; 198(17):2330-44. PubMed ID: 27325679 [TBL] [Abstract][Full Text] [Related]
7. An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores. Markel E; Maciak C; Butcher BG; Myers CR; Stodghill P; Bao Z; Cartinhour S; Swingle B J Bacteriol; 2011 Oct; 193(20):5775-83. PubMed ID: 21840980 [TBL] [Abstract][Full Text] [Related]
8. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Franza T; Mahé B; Expert D Mol Microbiol; 2005 Jan; 55(1):261-75. PubMed ID: 15612933 [TBL] [Abstract][Full Text] [Related]
9. Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Wensing A; Braun SD; Büttner P; Expert D; Völksch B; Ullrich MS; Weingart H Appl Environ Microbiol; 2010 May; 76(9):2704-11. PubMed ID: 20208028 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Swingle B; Thete D; Moll M; Myers CR; Schneider DJ; Cartinhour S Mol Microbiol; 2008 May; 68(4):871-89. PubMed ID: 18363796 [TBL] [Abstract][Full Text] [Related]
11. Regulons of three Pseudomonas syringae pv. tomato DC3000 iron starvation sigma factors. Markel E; Butcher BG; Myers CR; Stodghill P; Cartinhour S; Swingle B Appl Environ Microbiol; 2013 Jan; 79(2):725-7. PubMed ID: 23124242 [TBL] [Abstract][Full Text] [Related]
12. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response. Butcher BG; Bao Z; Wilson J; Stodghill P; Swingle B; Filiatrault M; Schneider D; Cartinhour S PLoS One; 2017; 12(7):e0180340. PubMed ID: 28700608 [TBL] [Abstract][Full Text] [Related]
15. Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Kurz M; Burch AY; Seip B; Lindow SE; Gross H Appl Environ Microbiol; 2010 Aug; 76(16):5452-62. PubMed ID: 20581190 [TBL] [Abstract][Full Text] [Related]
16. The 'core' and 'accessory' regulons of Pseudomonas-specific extracytoplasmic sigma factors. Cornelis P Mol Microbiol; 2008 May; 68(4):810-2. PubMed ID: 18430079 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the achromobactin iron acquisition operon in Sodalis glossinidius. Smith CL; Weiss BL; Aksoy S; Runyen-Janecky LJ Appl Environ Microbiol; 2013 May; 79(9):2872-81. PubMed ID: 23435882 [TBL] [Abstract][Full Text] [Related]
18. The algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster. Schenk A; Berger M; Keith LM; Bender CL; Muskhelishvili G; Ullrich MS J Bacteriol; 2006 Dec; 188(23):8013-21. PubMed ID: 17012388 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. Liu J; Yu M; Chatnaparat T; Lee JH; Tian Y; Hu B; Zhao Y BMC Genomics; 2020 Apr; 21(1):296. PubMed ID: 32272893 [TBL] [Abstract][Full Text] [Related]
20. Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. Records AR; Gross DC J Bacteriol; 2010 Jul; 192(14):3584-96. PubMed ID: 20472799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]