BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 22529956)

  • 1. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates.
    Egea PF; Muller-Steffner H; Kuhn I; Cakir-Kiefer C; Oppenheimer NJ; Stroud RM; Kellenberger E; Schuber F
    PLoS One; 2012; 7(4):e34918. PubMed ID: 22529956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues.
    Kuhn I; Kellenberger E; Cakir-Kiefer C; Muller-Steffner H; Schuber F
    Biochim Biophys Acta; 2014 Jul; 1844(7):1317-31. PubMed ID: 24721563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38.
    Graeff R; Liu Q; Kriksunov IA; Kotaka M; Oppenheimer N; Hao Q; Lee HC
    J Biol Chem; 2009 Oct; 284(40):27629-36. PubMed ID: 19640843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal.
    Zhang H; Graeff R; Chen Z; Zhang L; Zhang L; Lee H; Hao Q
    J Mol Biol; 2011 Jan; 405(4):1070-8. PubMed ID: 21134381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.
    Cakir-Kiefer C; Muller-Steffner H; Oppenheimer N; Schuber F
    Biochem J; 2001 Sep; 358(Pt 2):399-406. PubMed ID: 11513738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities.
    Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K
    J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase.
    Liu Q; Graeff R; Kriksunov IA; Jiang H; Zhang B; Oppenheimer N; Lin H; Potter BV; Lee HC; Hao Q
    J Biol Chem; 2009 Oct; 284(40):27637-45. PubMed ID: 19640846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase.
    Kotaka M; Graeff R; Chen Z; Zhang LH; Lee HC; Hao Q
    J Mol Biol; 2012 Jan; 415(3):514-26. PubMed ID: 22138343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38.
    Liu Q; Kriksunov IA; Graeff R; Lee HC; Hao Q
    J Biol Chem; 2007 Feb; 282(8):5853-61. PubMed ID: 17182614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis-associated conformational changes revealed by human CD38 complexed with a non-hydrolyzable substrate analog.
    Liu Q; Kriksunov IA; Moreau C; Graeff R; Potter BV; Lee HC; Hao Q
    J Biol Chem; 2007 Aug; 282(34):24825-32. PubMed ID: 17591784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the mechanistic understanding of human CD38-controlled multiple catalysis.
    Liu Q; Kriksunov IA; Graeff R; Munshi C; Lee HC; Hao Q
    J Biol Chem; 2006 Oct; 281(43):32861-9. PubMed ID: 16951430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity.
    Ting KY; Leung CF; Graeff RM; Lee HC; Hao Q; Kotaka M
    Protein Sci; 2016 Mar; 25(3):650-61. PubMed ID: 26660500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of bovine spleen NAD+ glycohydrolase in the metabolism of cyclic ADP-ribose-mechanism of the cyclization reaction.
    Muller-Steffner H; Augustin A; Schuber F
    Adv Exp Med Biol; 1997; 419():399-409. PubMed ID: 9193682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen.
    Inageda K; Takahashi K; Tokita K; Nishina H; Kanaho Y; Kukimoto I; Kontani K; Hoshino S; Katada T
    J Biochem; 1995 Jan; 117(1):125-31. PubMed ID: 7775378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the enzymatic active site of CD38 by site-directed mutagenesis.
    Munshi C; Aarhus R; Graeff R; Walseth TF; Levitt D; Lee HC
    J Biol Chem; 2000 Jul; 275(28):21566-71. PubMed ID: 10781610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38.
    Liu Q; Kriksunov IA; Jiang H; Graeff R; Lin H; Lee HC; Hao Q
    Chem Biol; 2008 Oct; 15(10):1068-78. PubMed ID: 18940667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human CD38 is an authentic NAD(P)+ glycohydrolase.
    Berthelier V; Tixier JM; Muller-Steffner H; Schuber F; Deterre P
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1383-90. PubMed ID: 9494110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the active site of ADP-ribosyl cyclase.
    Munshi C; Thiel DJ; Mathews II; Aarhus R; Walseth TF; Lee HC
    J Biol Chem; 1999 Oct; 274(43):30770-7. PubMed ID: 10521467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redesign of Schistosoma mansoni NAD+ catabolizing enzyme: active site H103W mutation restores ADP-ribosyl cyclase activity.
    Kuhn I; Kellenberger E; Rognan D; Lund FE; Muller-Steffner H; Schuber F
    Biochemistry; 2006 Oct; 45(39):11867-78. PubMed ID: 17002287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.