These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 22530048)

  • 21. Induction of protective immune responses against challenge of Actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs.
    Shin MK; Kang ML; Jung MH; Cha SB; Lee WJ; Kim JM; Kim DH; Yoo HS
    Vet Immunol Immunopathol; 2013 Jan; 151(1-2):132-9. PubMed ID: 23206402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Actinobacillus pleuropneumoniae infections in closed swine herds: infection patterns and serological profiles.
    Chiers K; Donné E; Van Overbeke I; Ducatelle R; Haesebrouck F
    Vet Microbiol; 2002 Apr; 85(4):343-52. PubMed ID: 11856584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PR-39, a porcine host defence peptide, is prominent in mucosa and lymphatic tissue of the respiratory tract in healthy pigs and pigs infected with Actinobacillus pleuropneumoniae.
    Hennig-Pauka I; Koch R; Hoeltig D; Gerlach GF; Waldmann KH; Blecha F; Brauer C; Gasse H
    BMC Res Notes; 2012 Sep; 5():539. PubMed ID: 23016650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental infection of SPF pigs with Actinobacillus pleuropneumoniae serotype 9 alone or in association with Mycoplasma hyopneumoniae.
    Marois C; Gottschalk M; Morvan H; Fablet C; Madec F; Kobisch M
    Vet Microbiol; 2009 Mar; 135(3-4):283-91. PubMed ID: 18977616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential expression of non-cytoplasmic Actinobacillus pleuropneumoniae proteins induced by addition of bronchoalveolar lavage fluid.
    Jacobsen ID; Meens J; Baltes N; Gerlach GF
    Vet Microbiol; 2005 Aug; 109(3-4):245-56. PubMed ID: 15979826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influences of ORF1 on the virulence and immunogenicity of Actinobacillus pleuropneumoniae.
    Yuan F; Liu J; Guo Y; Tan C; Fu S; Zhao J; Chen H; Bei W
    Curr Microbiol; 2011 Dec; 63(6):574-80. PubMed ID: 21964939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide evidence for positive selection and recombination in Actinobacillus pleuropneumoniae.
    Xu Z; Chen H; Zhou R
    BMC Evol Biol; 2011 Jul; 11():203. PubMed ID: 21749728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae.
    Li Y; Cao S; Zhang L; Yuan J; Zhao Q; Wen Y; Wu R; Huang X; Yan Q; Huang Y; Ma X; Han X; Miao C; Wen X
    Microb Pathog; 2019 Sep; 134():103596. PubMed ID: 31212036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells.
    Auger E; Deslandes V; Ramjeet M; Contreras I; Nash JH; Harel J; Gottschalk M; Olivier M; Jacques M
    Infect Immun; 2009 Apr; 77(4):1426-41. PubMed ID: 19139196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Cu,Zn]-Superoxide dismutase mutants of the swine pathogen Actinobacillus pleuropneumoniae are unattenuated in infections of the natural host.
    Sheehan BJ; Langford PR; Rycroft AN; Kroll JS
    Infect Immun; 2000 Aug; 68(8):4778-81. PubMed ID: 10899887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of influence of the anaerobic [NiFe] hydrogenase and L-1,2 propanediol oxidoreductase on the outcome of Actinobacillus pleuropneumoniae serotype 7 infection.
    Baltes N; Kyaw S; Hennig-Pauka I; Gerlach GF
    Vet Microbiol; 2004 Aug; 102(1-2):67-72. PubMed ID: 15288928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Actinobacillus pleuropneumoniae PCR typing system based on the apx and omlA genes--evaluation of isolates from lungs and tonsils of pigs.
    Gram T; Ahrens P; Andreasen M; Nielsen JP
    Vet Microbiol; 2000 Jul; 75(1):43-57. PubMed ID: 10865151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and molecular characterization of a urease-negative Actinobacillus pleuropneumoniae mutant.
    Ito H; Takahashi S; Asai T; Tamura Y; Yamamoto K
    J Vet Diagn Invest; 2018 Jan; 30(1):172-174. PubMed ID: 29145759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of single and dual infection of pigs with swine influenza virus and Actinobacillus pleuropneumoniae.
    Pomorska-Mól M; Dors A; Kwit K; Kowalczyk A; Stasiak E; Pejsak Z
    Vet Microbiol; 2017 Mar; 201():113-120. PubMed ID: 28284596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages.
    Qin W; Wang L; Zhai R; Ma Q; Liu J; Bao C; Zhang H; Sun C; Feng X; Gu J; Du C; Han W; Langford PR; Lei L
    Antonie Van Leeuwenhoek; 2016 Jan; 109(1):51-70. PubMed ID: 26494209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge.
    Xie F; Li G; Zhou L; Zhang Y; Cui N; Liu S; Wang C
    BMC Vet Res; 2017 Jan; 13(1):14. PubMed ID: 28061786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and immunogenicity of an apxIA mutant of Actinobacillus pleuropneumoniae.
    Xu F; Chen X; Shi A; Yang B; Wang J; Li Y; Guo X; Blackall PJ; Yang H
    Vet Microbiol; 2006 Dec; 118(3-4):230-9. PubMed ID: 16930871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of atypical Actinobacillus pleuropneumoniae serovar 15 lacking the apxIICA genes in Japan.
    Teshima K; Hirano H; Ushiyama K; Shibuya K; Nagai S; Sasakawa C; To H
    J Vet Med Sci; 2019 Mar; 81(3):480-485. PubMed ID: 30713216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection and distribution of DNA of Actinobacillus pleuropneumoniae in the lungs of naturally infected pigs by in-situ hybridization.
    Min K; Chae C
    J Comp Pathol; 1998 Aug; 119(2):169-75. PubMed ID: 9749361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of the anaerobic regulator HlyX causes reduced colonization and persistence of Actinobacillus pleuropneumoniae in the porcine respiratory tract.
    Baltes N; N'diaye M; Jacobsen ID; Maas A; Buettner FF; Gerlach GF
    Infect Immun; 2005 Aug; 73(8):4614-9. PubMed ID: 16040973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.