These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
468 related articles for article (PubMed ID: 22530593)
1. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Chauhan H; Khurana N; Nijhavan A; Khurana JP; Khurana P Plant Cell Environ; 2012 Nov; 35(11):1912-31. PubMed ID: 22530593 [TBL] [Abstract][Full Text] [Related]
3. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. Chauhan H; Khurana N; Agarwal P; Khurana JP; Khurana P PLoS One; 2013; 8(11):e79577. PubMed ID: 24265778 [TBL] [Abstract][Full Text] [Related]
4. Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Gao Z; He X; Zhao B; Zhou C; Liang Y; Ge R; Shen Y; Huang Z Plant Cell Physiol; 2010 May; 51(5):767-75. PubMed ID: 20360019 [TBL] [Abstract][Full Text] [Related]
5. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination. Elorza A; Roschzttardtz H; Gómez I; Mouras A; Holuigue L; Araya A; Jordana X Plant Cell Physiol; 2006 Jan; 47(1):14-21. PubMed ID: 16249327 [TBL] [Abstract][Full Text] [Related]
6. Characterization of differentially expressed stress-associated proteins in starch granule development under heat stress in wheat (Triticum aestivum L.). Kumar RR; Sharma SK; Goswami S; Singh GP; Singh R; Singh K; Pathak H; Rai RD Indian J Biochem Biophys; 2013 Apr; 50(2):126-38. PubMed ID: 23720887 [TBL] [Abstract][Full Text] [Related]
7. Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. Wang LC; Wu JR; Chang WL; Yeh CH; Ke YT; Lu CA; Wu SJ J Exp Bot; 2013 Apr; 64(6):1689-701. PubMed ID: 23408827 [TBL] [Abstract][Full Text] [Related]
8. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Park SJ; Kwak KJ; Oh TR; Kim YO; Kang H Plant Cell Physiol; 2009 Apr; 50(4):869-78. PubMed ID: 19258348 [TBL] [Abstract][Full Text] [Related]
9. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Kobayashi F; Maeta E; Terashima A; Takumi S Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415 [TBL] [Abstract][Full Text] [Related]
10. Small heat shock proteins can release light dependence of tobacco seed during germination. Koo HJ; Park SM; Kim KP; Suh MC; Lee MO; Lee SK; Xinli X; Hong CB Plant Physiol; 2015 Mar; 167(3):1030-8. PubMed ID: 25604531 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Kim JY; Kwak KJ; Jung HJ; Lee HJ; Kang H Plant Cell Physiol; 2010 Jun; 51(6):1079-83. PubMed ID: 20460498 [TBL] [Abstract][Full Text] [Related]
12. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Nakashima K; Fujita Y; Kanamori N; Katagiri T; Umezawa T; Kidokoro S; Maruyama K; Yoshida T; Ishiyama K; Kobayashi M; Shinozaki K; Yamaguchi-Shinozaki K Plant Cell Physiol; 2009 Jul; 50(7):1345-63. PubMed ID: 19541597 [TBL] [Abstract][Full Text] [Related]
13. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Ogawa D; Yamaguchi K; Nishiuchi T J Exp Bot; 2007; 58(12):3373-83. PubMed ID: 17890230 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Wehmeyer N; Hernandez LD; Finkelstein RR; Vierling E Plant Physiol; 1996 Oct; 112(2):747-57. PubMed ID: 8883386 [TBL] [Abstract][Full Text] [Related]
15. CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast. Shukla RK; Tripathi V; Jain D; Yadav RK; Chattopadhyay D FEBS J; 2009 Sep; 276(18):5252-62. PubMed ID: 19674105 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Qian J; Chen J; Liu YF; Yang LL; Li WP; Zhang LM Genet Mol Res; 2014 Feb; 13(1):1233-43. PubMed ID: 24634180 [TBL] [Abstract][Full Text] [Related]
17. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings. Sarkar NK; Kotak S; Agarwal M; Kim YK; Grover A Planta; 2019 Dec; 251(1):26. PubMed ID: 31797121 [TBL] [Abstract][Full Text] [Related]
18. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204 [TBL] [Abstract][Full Text] [Related]
19. Wheat TaTIFY3B and TaTIFY10A play roles in seed germination and abiotic stress responses in transgenic Arabidopsis and rice. Liu H; Yao Y; Ma J; Wang S; Li S; Wang W; Yu X; Sun F; Zhang C; Xi Y BMC Plant Biol; 2024 Oct; 24(1):951. PubMed ID: 39394572 [TBL] [Abstract][Full Text] [Related]
20. Seed-specific overexpression of antioxidant genes in Arabidopsis enhances oxidative stress tolerance during germination and early seedling growth. Xi DM; Liu WS; Yang GD; Wu CA; Zheng CC Plant Biotechnol J; 2010 Sep; 8(7):796-806. PubMed ID: 20691023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]