BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22530958)

  • 1. Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions.
    Sun L; Zhang L; Hemraz UD; Fenniri H; Webster TJ
    Tissue Eng Part A; 2012 Sep; 18(17-18):1741-50. PubMed ID: 22530958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
    Cai L; Guinn AS; Wang S
    Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled rosette nanotubes and poly(2-hydroxyethyl methacrylate) hydrogels promote skin cell functions.
    Sun L; Li D; Hemraz UD; Fenniri H; Webster TJ
    J Biomed Mater Res A; 2014 Oct; 102(10):3446-51. PubMed ID: 24178366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites.
    Tripathi G; Gough JE; Dinda A; Basu B
    J Biomed Mater Res A; 2013 Jun; 101(6):1539-49. PubMed ID: 23065866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications.
    Meng X; Stout DA; Sun L; Beingessner RL; Fenniri H; Webster TJ
    J Biomed Mater Res A; 2013 Apr; 101(4):1095-102. PubMed ID: 23008178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering.
    Xing ZC; Han SJ; Shin YS; Koo TH; Moon S; Jeong Y; Kang IK
    J Biomater Sci Polym Ed; 2013; 24(1):61-76. PubMed ID: 22289639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts.
    Lahiri D; Singh V; Benaduce AP; Seal S; Kos L; Agarwal A
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):44-56. PubMed ID: 21094479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotube Reinforced Hydroxyapatite Nanocomposites As Bone Implants: Nanostructure, Mechanical Strength And Biocompatibility.
    Lawton K; Le H; Tredwin C; Handy RD
    Int J Nanomedicine; 2019; 14():7947-7962. PubMed ID: 31632010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells.
    Shokrgozar MA; Farokhi M; Rajaei F; Bagheri MH; Azari Sh; Ghasemi I; Mottaghitalab F; Azadmanesh K; Radfar J
    J Biomed Mater Res A; 2010 Dec; 95(4):1074-83. PubMed ID: 20878932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites.
    Evis Z; Sato M; Webster TJ
    J Biomed Mater Res A; 2006 Sep; 78(3):500-7. PubMed ID: 16736481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements.
    Liao CZ; Li K; Wong HM; Tong WY; Yeung KW; Tjong SC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1380-8. PubMed ID: 23827585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites.
    Farzin A; Ahmadian M; Fathi MH
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2251-7. PubMed ID: 23498255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased osteoblast functions on theta + delta nanofiber alumina.
    Webster TJ; Hellenmeyer EL; Price RL
    Biomaterials; 2005 Mar; 26(9):953-60. PubMed ID: 15369683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn+2.
    Santos MH; Valerio P; Goes AM; Leite MF; Heneine LG; Mansur HS
    Biomed Mater; 2007 Jun; 2(2):135-41. PubMed ID: 18458447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly-(epsilon-caprolactone)/hydroxyapa- tite composite.
    Giordano C; Causa F; Silvio LD; Ambrosio L
    J Mater Sci Mater Med; 2007 Apr; 18(4):653-60. PubMed ID: 17546428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite nanoparticle loaded collagen fiber composites: microarchitecture and nanoindentation study.
    Stanishevsky A; Chowdhury S; Chinoda P; Thomas V
    J Biomed Mater Res A; 2008 Sep; 86(4):873-82. PubMed ID: 18041734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.
    Ergun C; Liu H; Webster TJ
    J Biomed Mater Res A; 2009 Jun; 89(3):727-33. PubMed ID: 18464257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering.
    Zhang Y; Hao L; Savalani MM; Harris RA; Di Silvio L; Tanner KE
    J Biomed Mater Res A; 2009 Dec; 91(4):1018-27. PubMed ID: 19107791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.