These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22530967)

  • 1. Expression, purification, and reconstitution of a diatom silicon transporter.
    Curnow P; Senior L; Knight MJ; Thamatrakoln K; Hildebrand M; Booth PJ
    Biochemistry; 2012 May; 51(18):3776-85. PubMed ID: 22530967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicification process in diatom algae using different silicon chemical sources: Colloidal silicic acid interactions at cell surface.
    Casabianca S; Penna A; Capellacci S; Cangiotti M; Ottaviani MF
    Colloids Surf B Biointerfaces; 2018 Jan; 161():620-627. PubMed ID: 29156339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence of the molecular basis for biological silicon transport.
    Knight MJ; Senior L; Nancolas B; Ratcliffe S; Curnow P
    Nat Commun; 2016 Jun; 7():11926. PubMed ID: 27305972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches for functional characterization of diatom silicic acid transporters.
    Thamatrakoln K; Hildebrand M
    J Nanosci Nanotechnol; 2005 Jan; 5(1):158-66. PubMed ID: 15762174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses.
    Shrestha RP; Hildebrand M
    Eukaryot Cell; 2015 Jan; 14(1):29-40. PubMed ID: 25380754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomineralization in diatoms: the role of silacidins.
    Richthammer P; Börmel M; Brunner E; van Pée KH
    Chembiochem; 2011 Jun; 12(9):1362-6. PubMed ID: 21560217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization.
    Javaheri N; Dries R; Kaandorp J
    PLoS Comput Biol; 2014 Jun; 10(6):e1003687. PubMed ID: 24945622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modelling of diatom silicic acid transporters predicts a conserved fold with implications for their function and evolution.
    Knight MJ; Hardy BJ; Wheeler GL; Curnow P
    Biochim Biophys Acta Biomembr; 2023 Jan; 1865(1):184056. PubMed ID: 36191629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters.
    Thamatrakoln K; Hildebrand M
    Plant Physiol; 2008 Mar; 146(3):1397-407. PubMed ID: 18162598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana.
    Sumper M; Brunner E
    Chembiochem; 2008 May; 9(8):1187-94. PubMed ID: 18381716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity through the cell cycle.
    Thamatrakoln K; Hildebrand M
    Eukaryot Cell; 2007 Feb; 6(2):271-9. PubMed ID: 17172435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters.
    Sapriel G; Quinet M; Heijde M; Jourdren L; Tanty V; Luo G; Le Crom S; Lopez PJ
    PLoS One; 2009 Oct; 4(10):e7458. PubMed ID: 19829693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure formation.
    Frigeri LG; Radabaugh TR; Haynes PA; Hildebrand M
    Mol Cell Proteomics; 2006 Jan; 5(1):182-93. PubMed ID: 16207702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopatterned protein microrings from a diatom that direct silica morphogenesis.
    Scheffel A; Poulsen N; Shian S; Kröger N
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3175-80. PubMed ID: 21300899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of silicon transporters in diatoms.
    Durkin CA; Koester JA; Bender SJ; Armbrust EV
    J Phycol; 2016 Oct; 52(5):716-731. PubMed ID: 27335204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phase separation model for the nanopatterning of diatom biosilica.
    Sumper M
    Science; 2002 Mar; 295(5564):2430-3. PubMed ID: 11923533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana.
    Shrestha RP; Tesson B; Norden-Krichmar T; Federowicz S; Hildebrand M; Allen AE
    BMC Genomics; 2012 Sep; 13():499. PubMed ID: 22994549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Probable Mechanism for Silicon Capture by Diatom Algae: Assimilation of Polycarbonic Acids with Diatoms-Is Endocytosis a Key Stage in Building of Siliceous Frustules?
    Annenkov VV; Gordon R; Zelinskiy SN; Danilovtseva EN
    J Phycol; 2020 Dec; 56(6):1729-1737. PubMed ID: 32767752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional reconstitution and characterization of purified Na+/proline transporter of Escherichia coli.
    Jung H; Tebbe S; Schmid R; Jung K
    Biochemistry; 1998 Aug; 37(31):11083-8. PubMed ID: 9693004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography.
    Scharff-Poulsen P; Pedersen PA
    PLoS One; 2013; 8(10):e76851. PubMed ID: 24124599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.