BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22530967)

  • 1. Expression, purification, and reconstitution of a diatom silicon transporter.
    Curnow P; Senior L; Knight MJ; Thamatrakoln K; Hildebrand M; Booth PJ
    Biochemistry; 2012 May; 51(18):3776-85. PubMed ID: 22530967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicification process in diatom algae using different silicon chemical sources: Colloidal silicic acid interactions at cell surface.
    Casabianca S; Penna A; Capellacci S; Cangiotti M; Ottaviani MF
    Colloids Surf B Biointerfaces; 2018 Jan; 161():620-627. PubMed ID: 29156339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence of the molecular basis for biological silicon transport.
    Knight MJ; Senior L; Nancolas B; Ratcliffe S; Curnow P
    Nat Commun; 2016 Jun; 7():11926. PubMed ID: 27305972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches for functional characterization of diatom silicic acid transporters.
    Thamatrakoln K; Hildebrand M
    J Nanosci Nanotechnol; 2005 Jan; 5(1):158-66. PubMed ID: 15762174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses.
    Shrestha RP; Hildebrand M
    Eukaryot Cell; 2015 Jan; 14(1):29-40. PubMed ID: 25380754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomineralization in diatoms: the role of silacidins.
    Richthammer P; Börmel M; Brunner E; van Pée KH
    Chembiochem; 2011 Jun; 12(9):1362-6. PubMed ID: 21560217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization.
    Javaheri N; Dries R; Kaandorp J
    PLoS Comput Biol; 2014 Jun; 10(6):e1003687. PubMed ID: 24945622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modelling of diatom silicic acid transporters predicts a conserved fold with implications for their function and evolution.
    Knight MJ; Hardy BJ; Wheeler GL; Curnow P
    Biochim Biophys Acta Biomembr; 2023 Jan; 1865(1):184056. PubMed ID: 36191629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters.
    Thamatrakoln K; Hildebrand M
    Plant Physiol; 2008 Mar; 146(3):1397-407. PubMed ID: 18162598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana.
    Sumper M; Brunner E
    Chembiochem; 2008 May; 9(8):1187-94. PubMed ID: 18381716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity through the cell cycle.
    Thamatrakoln K; Hildebrand M
    Eukaryot Cell; 2007 Feb; 6(2):271-9. PubMed ID: 17172435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters.
    Sapriel G; Quinet M; Heijde M; Jourdren L; Tanty V; Luo G; Le Crom S; Lopez PJ
    PLoS One; 2009 Oct; 4(10):e7458. PubMed ID: 19829693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure formation.
    Frigeri LG; Radabaugh TR; Haynes PA; Hildebrand M
    Mol Cell Proteomics; 2006 Jan; 5(1):182-93. PubMed ID: 16207702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopatterned protein microrings from a diatom that direct silica morphogenesis.
    Scheffel A; Poulsen N; Shian S; Kröger N
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3175-80. PubMed ID: 21300899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of silicon transporters in diatoms.
    Durkin CA; Koester JA; Bender SJ; Armbrust EV
    J Phycol; 2016 Oct; 52(5):716-731. PubMed ID: 27335204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phase separation model for the nanopatterning of diatom biosilica.
    Sumper M
    Science; 2002 Mar; 295(5564):2430-3. PubMed ID: 11923533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana.
    Shrestha RP; Tesson B; Norden-Krichmar T; Federowicz S; Hildebrand M; Allen AE
    BMC Genomics; 2012 Sep; 13():499. PubMed ID: 22994549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Probable Mechanism for Silicon Capture by Diatom Algae: Assimilation of Polycarbonic Acids with Diatoms-Is Endocytosis a Key Stage in Building of Siliceous Frustules?
    Annenkov VV; Gordon R; Zelinskiy SN; Danilovtseva EN
    J Phycol; 2020 Dec; 56(6):1729-1737. PubMed ID: 32767752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional reconstitution and characterization of purified Na+/proline transporter of Escherichia coli.
    Jung H; Tebbe S; Schmid R; Jung K
    Biochemistry; 1998 Aug; 37(31):11083-8. PubMed ID: 9693004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography.
    Scharff-Poulsen P; Pedersen PA
    PLoS One; 2013; 8(10):e76851. PubMed ID: 24124599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.