These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22531054)

  • 1. New lecithin organogels from lecithin/polyglycerol/oil systems.
    Hashizaki K; Sakanishi Y; Yako S; Tsusaka H; Imai M; Taguchi H; Saito Y
    J Oleo Sci; 2012; 61(5):267-75. PubMed ID: 22531054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.
    Hashizaki K; Imai M; Yako S; Tsusaka H; Sakanishi Y; Saito Y; Fujii M
    J Oleo Sci; 2017 Sep; 66(9):997-1007. PubMed ID: 28794316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new reverse worm-like micellar system from a lecithin, multivalent carboxylic acid and oil mixture.
    Imai M; Hashizaki K; Taguchi H; Saito Y; Motohashi S
    J Colloid Interface Sci; 2013 Aug; 403():77-83. PubMed ID: 23684226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological behavior of worm-like micelles in a mixed nonionic surfactant system of a polyoxyethylene phytosterol and a glycerin fatty acid monoester.
    Hashizaki K; Tamaki N; Taguchi H; Saito Y; Tsuchiya K; Sakai H; Abe M
    Chem Pharm Bull (Tokyo); 2008 Dec; 56(12):1682-6. PubMed ID: 19043239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization.
    Njauw CW; Cheng CY; Ivanov VA; Khokhlov AR; Tung SH
    Langmuir; 2013 Mar; 29(12):3879-88. PubMed ID: 23441904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Physicochemical Properties of Liquid Paraffin on the Phase State and Rheological Properties of Lecithin Reverse Wormlike Micelles.
    Miyasaka Y; Hashizaki K; Kono Y; Taguchi H; Fujii M
    Chem Pharm Bull (Tokyo); 2022; 70(1):52-56. PubMed ID: 34980734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of phytosterol-lecithin mixed micelles and organogels.
    Matheson AB; Dalkas G; Gromov A; Euston SR; Clegg PS
    Food Funct; 2017 Dec; 8(12):4547-4554. PubMed ID: 29111558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature on the rheological behavior of worm-like micelles in a mixed nonionic surfactant system.
    Hashizaki K; Taguchi H; Saito Y
    J Oleo Sci; 2009; 58(5):255-60. PubMed ID: 19367081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrorheological Effects in Lecithin Organogels with Water and Glycerol.
    Shchipunov YA; Dürrschmidt T; Hoffmann H
    J Colloid Interface Sci; 1999 Apr; 212(2):390-401. PubMed ID: 10092369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of polyglycerol oleic acid ester nonionic surfactant reverse micelles in decane: growth control by headgroup size.
    Shrestha LK; Dulle M; Glatter O; Aramaki K
    Langmuir; 2010 May; 26(10):7015-24. PubMed ID: 20180589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole.
    Jadhav KR; Kadam VJ; Pisal SS
    Curr Drug Deliv; 2009 Apr; 6(2):174-83. PubMed ID: 19450224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.
    Moran-Valero MI; Ruiz-Henestrosa VMP; Pilosof AMR
    Colloids Surf B Biointerfaces; 2017 Mar; 151():68-75. PubMed ID: 27987457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible lecithin organogels: structure and phase equilibria.
    Angelico R; Ceglie A; Colafemmina G; Lopez F; Murgia S; Olsson U; Palazzo G
    Langmuir; 2005 Jan; 21(1):140-8. PubMed ID: 15620295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.
    Nouraei M; Acosta EJ
    J Colloid Interface Sci; 2017 Jun; 495():178-190. PubMed ID: 28199856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topical delivery of aceclofenac from lecithin organogels: preformulation study.
    Shaikh IM; Jadhav KR; Gide PS; Kadam VJ; Pisal SS
    Curr Drug Deliv; 2006 Oct; 3(4):417-27. PubMed ID: 17076644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and evaluation of tubular micelles of pluronic lecithin organogel for transdermal delivery of sumatriptan.
    Agrawal V; Gupta V; Ramteke S; Trivedi P
    AAPS PharmSciTech; 2010 Dec; 11(4):1718-25. PubMed ID: 21128126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity.
    Jones DS; Muldoon BC; Woolfson AD; Sanderson FD
    J Pharm Sci; 2007 Oct; 96(10):2632-46. PubMed ID: 17702045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems.
    Shrestha RG; Shrestha LK; Aramaki K
    J Colloid Interface Sci; 2008 Jun; 322(2):596-604. PubMed ID: 18395738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and characterization of fenretinide containing organogels.
    Esposito E; Menegatti E; Cortesi R
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):383-9. PubMed ID: 25428085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological Properties and Composition Affecting the Skin Permeation of a Model of a Hydrophilic Drug in Lecithin Reverse Wormlike Micelles.
    Miyasaka Y; Hashizaki K; Shibasaki K; Fujii M; Taguchi H
    Biol Pharm Bull; 2024 Jan; 47(1):245-252. PubMed ID: 38092382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.