BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 22531177)

  • 1. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics.
    Guvendiren M; Burdick JA
    Nat Commun; 2012 Apr; 3():792. PubMed ID: 22531177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments.
    Rosales AM; Vega SL; DelRio FW; Burdick JA; Anseth KS
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12132-12136. PubMed ID: 28799225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Stiffening Hydrogel with Instructive Stiffening Timing Modulates Stem Cell Fate In Vitro and Enhances Bone Remodeling In Vivo.
    Li X; Liu S; Han S; Sun Q; Yang J; Zhang Y; Jiang Y; Wang X; Li Q; Wang J
    Adv Healthc Mater; 2023 Nov; 12(29):e2300326. PubMed ID: 37643370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening.
    Yan T; Rao D; Chen Y; Wang Y; Zhang Q; Wu S
    Acta Biomater; 2022 Jan; 138():112-123. PubMed ID: 34749001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells.
    Labouesse C; Tan BX; Agley CC; Hofer M; Winkel AK; Stirparo GG; Stuart HT; Verstreken CM; Mulas C; Mansfield W; Bertone P; Franze K; Silva JCR; Chalut KJ
    Nat Commun; 2021 Oct; 12(1):6132. PubMed ID: 34675200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-Anthracene Hydrogels as an On-Demand Stiffening Matrix To Study Mechanobiology.
    Günay KA; Ceccato TL; Silver JS; Bannister KL; Bednarski OJ; Leinwand LA; Anseth KS
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9912-9916. PubMed ID: 31119851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness.
    Peng Y; Liu QJ; He T; Ye K; Yao X; Ding J
    Biomaterials; 2018 Sep; 178():467-480. PubMed ID: 29685517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical guide to hydrogels for cell culture.
    Caliari SR; Burdick JA
    Nat Methods; 2016 Apr; 13(5):405-14. PubMed ID: 27123816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoresponsive Hydrogels with Photoswitchable Mechanical Properties Allow Time-Resolved Analysis of Cellular Responses to Matrix Stiffening.
    Lee IN; Dobre O; Richards D; Ballestrem C; Curran JM; Hunt JA; Richardson SM; Swift J; Wong LS
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7765-7776. PubMed ID: 29430919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate.
    Huebsch N; Arany PR; Mao AS; Shvartsman D; Ali OA; Bencherif SA; Rivera-Feliciano J; Mooney DJ
    Nat Mater; 2010 Jun; 9(6):518-26. PubMed ID: 20418863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics-Controlled Dynamic Cell Niches Guided Osteogenic Differentiation of Stem Cells via Preserved Cellular Mechanical Memory.
    Wei D; Liu A; Sun J; Chen S; Wu C; Zhu H; Chen Y; Luo H; Fan H
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):260-274. PubMed ID: 31800206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels.
    Hwang NS; Varghese S; Li H; Elisseeff J
    Cell Tissue Res; 2011 Jun; 344(3):499-509. PubMed ID: 21503601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mussel-inspired adhesive and polypeptide-based antibacterial thermo-sensitive hydroxybutyl chitosan hydrogel as BMSCs 3D culture matrix for wound healing.
    Tian MP; Zhang AD; Yao YX; Chen XG; Liu Y
    Carbohydr Polym; 2021 Jun; 261():117878. PubMed ID: 33766365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates.
    Gong Z; Szczesny SE; Caliari SR; Charrier EE; Chaudhuri O; Cao X; Lin Y; Mauck RL; Janmey PA; Burdick JA; Shenoy VB
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2686-E2695. PubMed ID: 29507238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of Induced Pluripotent Stem Cells towards Mesenchymal Stromal Cells is Hampered by Culture in 3D Hydrogels.
    Goetzke R; Keijdener H; Franzen J; Ostrowska A; Nüchtern S; Mela P; Wagner W
    Sci Rep; 2019 Oct; 9(1):15578. PubMed ID: 31666572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels.
    Das RK; Gocheva V; Hammink R; Zouani OF; Rowan AE
    Nat Mater; 2016 Mar; 15(3):318-25. PubMed ID: 26618883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis: A paradigm for metabolomics-based evaluation of biomaterial design.
    Klontzas ME; Reakasame S; Silva R; Morais JCF; Vernardis S; MacFarlane RJ; Heliotis M; Tsiridis E; Panoskaltsis N; Boccaccini AR; Mantalaris A
    Acta Biomater; 2019 Apr; 88():224-240. PubMed ID: 30772514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5.
    Sun M; Chi G; Xu J; Tan Y; Xu J; Lv S; Xu Z; Xia Y; Li L; Li Y
    Stem Cell Res Ther; 2018 Mar; 9(1):52. PubMed ID: 29490668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.