BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22531218)

  • 1. MMFPh: a maximal motif finder for phosphoproteomics datasets.
    Wang T; Kettenbach AN; Gerber SA; Bailey-Kellogg C
    Bioinformatics; 2012 Jun; 28(12):1562-70. PubMed ID: 22531218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comments on 'MMFPh: a maximal motif finder for phosphoproteomics datasets'.
    He Z; Gong H
    Bioinformatics; 2012 Aug; 28(16):2211-2; author reply 2213. PubMed ID: 22734018
    [No Abstract]   [Full Text] [Related]  

  • 3. Discovery of phosphorylation motif mixtures in phosphoproteomics data.
    Ritz A; Shakhnarovich G; Salomon AR; Raphael BJ
    Bioinformatics; 2009 Jan; 25(1):14-21. PubMed ID: 18996944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining Conditional Phosphorylation Motifs.
    Liu X; Wu J; Gong H; Deng S; He Z
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):915-27. PubMed ID: 26356863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoMo: discovery of statistically significant post-translational modification motifs.
    Cheng A; Grant CE; Noble WS; Bailey TL
    Bioinformatics; 2019 Aug; 35(16):2774-2782. PubMed ID: 30596994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs.
    Obenauer JC; Cantley LC; Yaffe MB
    Nucleic Acids Res; 2003 Jul; 31(13):3635-41. PubMed ID: 12824383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity.
    Chen X; Shi SP; Suo SB; Xu HD; Qiu JD
    Bioinformatics; 2015 Jan; 31(2):194-200. PubMed ID: 25236462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NestedMICA as an ab initio protein motif discovery tool.
    Doğruel M; Down TA; Hubbard TJ
    BMC Bioinformatics; 2008 Jan; 9():19. PubMed ID: 18194537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of protein phosphorylation motifs through exploratory data analysis.
    Chen YC; Aguan K; Yang CW; Wang YT; Pal NR; Chung IF
    PLoS One; 2011; 6(5):e20025. PubMed ID: 21647451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-Analysis of Arabidopsis thaliana Phospho-Proteomics Data Reveals Compartmentalization of Phosphorylation Motifs.
    van Wijk KJ; Friso G; Walther D; Schulze WX
    Plant Cell; 2014 Jun; 26(6):2367-2389. PubMed ID: 24894044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics.
    Wu X; Tian L; Li J; Zhang Y; Han V; Li Y; Xu X; Li H; Chen X; Chen J; Jin W; Xie Y; Han J; Zhong CQ
    Mol Cell Proteomics; 2012 Dec; 11(12):1640-51. PubMed ID: 22942356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides.
    Madeira F; Tinti M; Murugesan G; Berrett E; Stafford M; Toth R; Cole C; MacKintosh C; Barton GJ
    Bioinformatics; 2015 Jul; 31(14):2276-83. PubMed ID: 25735772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs.
    Davey NE; Haslam NJ; Shields DC; Edwards RJ
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W534-9. PubMed ID: 20497999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust unsupervised deconvolution of linear motifs characterizes 68 protein modifications at proteome scale.
    Smith TG; Uzozie AC; Chen S; Lange PF
    Sci Rep; 2021 Nov; 11(1):22490. PubMed ID: 34795380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pLogo: a probabilistic approach to visualizing sequence motifs.
    O'Shea JP; Chou MF; Quader SA; Ryan JK; Church GM; Schwartz D
    Nat Methods; 2013 Dec; 10(12):1211-2. PubMed ID: 24097270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo.
    Lemeer S; Pinkse MW; Mohammed S; van Breukelen B; den Hertog J; Slijper M; Heck AJ
    J Proteome Res; 2008 Apr; 7(4):1555-64. PubMed ID: 18307296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of the cell-extracted proteome as a substrate pool for exploring phosphorylation motifs of kinases.
    Niinae T; Sugiyama N; Ishihama Y
    Genes Cells; 2023 Oct; 28(10):727-735. PubMed ID: 37658684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.