These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 22531704)
1. Racemization of two proteins over our lifespan: deamidation of asparagine 76 in γS crystallin is greater in cataract than in normal lenses across the age range. Hooi MY; Raftery MJ; Truscott RJ Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3554-61. PubMed ID: 22531704 [TBL] [Abstract][Full Text] [Related]
2. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
3. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients. Zhu XJ; Zhang KK; He WW; Du Y; Hooi M; Lu Y J Cell Mol Med; 2018 Feb; 22(2):1118-1126. PubMed ID: 28994184 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous stereoinversion and isomerization at the Asp-4 residue in βB2-crystallin from the aged human eye lenses. Fujii N; Kawaguchi T; Sasaki H; Fujii N Biochemistry; 2011 Oct; 50(40):8628-35. PubMed ID: 21877723 [TBL] [Abstract][Full Text] [Related]
5. Site-specific rapid deamidation and isomerization in human lens αA-crystallin in vitro. Takata T; Ha S; Koide T; Fujii N Protein Sci; 2020 Apr; 29(4):955-965. PubMed ID: 31930615 [TBL] [Abstract][Full Text] [Related]
6. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens. Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419 [TBL] [Abstract][Full Text] [Related]
7. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state. Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
9. Racemization in cataractous lens from diabetic and aging individuals: analysis of Asp 58 residue in αA-crystallin. Zhu XJ; Zhang KK; He WW; Qi J; Lu Y Aging (Albany NY); 2021 Jun; 13(11):15255-15268. PubMed ID: 34096886 [TBL] [Abstract][Full Text] [Related]
10. Accelerated aging of Asp 58 in αA crystallin and human cataract formation. Hooi MY; Raftery MJ; Truscott RJ Exp Eye Res; 2013 Jan; 106():34-9. PubMed ID: 23142040 [TBL] [Abstract][Full Text] [Related]
11. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats. Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790 [TBL] [Abstract][Full Text] [Related]
12. Age-dependent deamidation of lifelong proteins in the human lens. Hains PG; Truscott RJ Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3107-14. PubMed ID: 20053973 [TBL] [Abstract][Full Text] [Related]
13. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses. Srivastava OP; Srivastava K Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643 [TBL] [Abstract][Full Text] [Related]
14. Inversion and isomerization of Asp-58 residue in human alphaA-crystallin from normal aged lenses and cataractous lenses. Fujii N; Matsumoto S; Hiroki K; Takemoto L Biochim Biophys Acta; 2001 Oct; 1549(2):179-87. PubMed ID: 11690655 [TBL] [Abstract][Full Text] [Related]
15. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging. Norton-Baker B; Mehrabi P; Kwok AO; Roskamp KW; Rocha MA; Sprague-Piercy MA; von Stetten D; Miller RJD; Martin RW Structure; 2022 May; 30(5):763-776.e4. PubMed ID: 35338852 [TBL] [Abstract][Full Text] [Related]
16. Increased deamidation of asparagine during human senile cataractogenesis. Takemoto L; Boyle D Mol Vis; 2000 Sep; 6():164-8. PubMed ID: 10976112 [TBL] [Abstract][Full Text] [Related]
17. Negative charge at aspartate 151 is important for human lens αA-crystallin stability and chaperone function. Takata T; Matsubara T; Nakamura-Hirota T; Fujii N Exp Eye Res; 2019 May; 182():10-18. PubMed ID: 30849387 [TBL] [Abstract][Full Text] [Related]
18. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice. Ji Y; Bi H; Li N; Jin H; Yang P; Kong X; Yan S; Lu Y Mol Vis; 2010 Jun; 16():1068-75. PubMed ID: 20596256 [TBL] [Abstract][Full Text] [Related]
19. Cumulative deamidations of the major lens protein γS-crystallin increase its aggregation during unfolding and oxidation. Vetter CJ; Thorn DC; Wheeler SG; Mundorff CC; Halverson KA; Wales TE; Shinde UP; Engen JR; David LL; Carver JA; Lampi KJ Protein Sci; 2020 Sep; 29(9):1945-1963. PubMed ID: 32697405 [TBL] [Abstract][Full Text] [Related]
20. Age-dependent deamidation of glutamine residues in human γS crystallin: deamidation and unstructured regions. Hooi MY; Raftery MJ; Truscott RJ Protein Sci; 2012 Jul; 21(7):1074-9. PubMed ID: 22593035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]