These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22531765)

  • 41. Three-dimensional cardiac architecture determined by two-photon microtomy.
    Huang H; Macgillivray C; Kwon HS; Lammerding J; Robbins J; Lee RT; So P
    J Biomed Opt; 2009; 14(4):044029. PubMed ID: 19725740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated, non-invasive characterization of stem cell-derived cardiomyocytes from phase-contrast microscopy.
    Maddah M; Loewke K
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):57-64. PubMed ID: 25333101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An automated assay for the assessment of cardiac arrest in fish embryo.
    Puybareau E; Genest D; Barbeau E; Léonard M; Talbot H
    Comput Biol Med; 2017 Feb; 81():32-44. PubMed ID: 28013025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell tracking in fluorescence images of embryogenesis processes with morphological reconstruction by 4D-tubular structuring elements.
    Pastor D; Luengo-Oroz MA; Lombardot B; Gonzalvez I; Duloquin L; Savy T; Bourgine P; Peyrieras N; Santos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():970-3. PubMed ID: 19964254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automated annotation and quantitative description of ultrasound videos of the fetal heart.
    Bridge CP; Ioannou C; Noble JA
    Med Image Anal; 2017 Feb; 36():147-161. PubMed ID: 27907850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development.
    Liebling M; Forouhar AS; Wolleschensky R; Zimmermann B; Ankerhold R; Fraser SE; Gharib M; Dickinson ME
    Dev Dyn; 2006 Nov; 235(11):2940-8. PubMed ID: 16921497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional digital image analysis of immunostained neurons in thick tissue sections.
    Selinummi J; Ruusuvuori P; Lehmussola A; Huttunen H; Yli-Harja O; Miettinen R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4783-6. PubMed ID: 17946263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional real-time imaging of cardiac cell motions in living embryos.
    Lu J; Pereira F; Fraser SE; Gharib M
    J Biomed Opt; 2008; 13(1):014006. PubMed ID: 18315364
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shaped 3D singular spectrum analysis for quantifying gene expression, with application to the early zebrafish embryo.
    Shlemov A; Golyandina N; Holloway D; Spirov A
    Biomed Res Int; 2015; 2015():986436. PubMed ID: 26495320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.
    Duan Y; Chen N
    Opt Lett; 2015 Nov; 40(22):5251-4. PubMed ID: 26565847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid 3D light-sheet microscopy with a tunable lens.
    Fahrbach FO; Voigt FF; Schmid B; Helmchen F; Huisken J
    Opt Express; 2013 Sep; 21(18):21010-26. PubMed ID: 24103973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-resolution 3D optical microscopy inside the beating zebrafish heart using prospective optical gating.
    Taylor JM; Girkin JM; Love GD
    Biomed Opt Express; 2012 Dec; 3(12):3043-53. PubMed ID: 23243558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-speed multicolor microscopy of repeating dynamic processes.
    Ohn J; Yang J; Fraser SE; Lansford R; Liebling M
    Genesis; 2011 Jul; 49(7):514-21. PubMed ID: 21638751
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy.
    Soulet D; Paré A; Coste J; Lacroix S
    PLoS One; 2013; 8(1):e53942. PubMed ID: 23326545
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning.
    Wang Z; Zhu L; Zhang H; Li G; Yi C; Li Y; Yang Y; Ding Y; Zhen M; Gao S; Hsiai TK; Fei P
    Nat Methods; 2021 May; 18(5):551-556. PubMed ID: 33574612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures.
    Larina IV; Larin KV; Dickinson ME; Liebling M
    Biomed Opt Express; 2012 Mar; 3(3):650-60. PubMed ID: 22435109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast differential interference contrast imaging combined with autocorrelation treatments to measure the heart rate of embryonic fish.
    Zhu JT; He J; Chen JY; Lu DR; Zhou LW
    J Biomed Opt; 2008; 13(2):020503. PubMed ID: 18465946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast and robust optical flow for time-lapse microscopy using super-voxels.
    Amat F; Myers EW; Keller PJ
    Bioinformatics; 2013 Feb; 29(3):373-80. PubMed ID: 23242263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart.
    Taylor JM; Nelson CJ; Bruton FA; Kaveh A; Buckley C; Tucker CS; Rossi AG; Mullins JJ; Denvir MA
    Nat Commun; 2019 Nov; 10(1):5173. PubMed ID: 31729395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virtual-scanning light-field microscopy for robust snapshot high-resolution volumetric imaging.
    Lu Z; Liu Y; Jin M; Luo X; Yue H; Wang Z; Zuo S; Zeng Y; Fan J; Pang Y; Wu J; Yang J; Dai Q
    Nat Methods; 2023 May; 20(5):735-746. PubMed ID: 37024654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.