These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 22531849)
1. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles through direct chemisorption of FITC-Tat-PEG₆₀₀-b-poly(glycerol monoacrylate). Wang C; Qiao L; Zhang Q; Yan H; Liu K Int J Pharm; 2012 Jul; 430(1-2):372-80. PubMed ID: 22531849 [TBL] [Abstract][Full Text] [Related]
2. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis. Nair BG; Fukuda T; Mizuki T; Hanajiri T; Maekawa T Biochem Biophys Res Commun; 2012 May; 421(4):763-7. PubMed ID: 22546557 [TBL] [Abstract][Full Text] [Related]
3. Development of cell-penetrating peptide-modified MPEG-PCL diblock copolymeric nanoparticles for systemic gene delivery. Tanaka K; Kanazawa T; Shibata Y; Suda Y; Fukuda T; Takashima Y; Okada H Int J Pharm; 2010 Aug; 396(1-2):229-38. PubMed ID: 20600726 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable polymersomes with an ionizable membrane: facile preparation, superior protein loading, and endosomal pH-responsive protein release. Li S; Meng F; Wang Z; Zhong Y; Zheng M; Liu H; Zhong Z Eur J Pharm Biopharm; 2012 Sep; 82(1):103-11. PubMed ID: 22691417 [TBL] [Abstract][Full Text] [Related]
5. Tat peptide mediated cellular uptake of SiO2 submicron particles. Mao Z; Wan L; Hu L; Ma L; Gao C Colloids Surf B Biointerfaces; 2010 Feb; 75(2):432-40. PubMed ID: 19846283 [TBL] [Abstract][Full Text] [Related]
6. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Liu L; Guo K; Lu J; Venkatraman SS; Luo D; Ng KC; Ling EA; Moochhala S; Yang YY Biomaterials; 2008 Apr; 29(10):1509-17. PubMed ID: 18155137 [TBL] [Abstract][Full Text] [Related]
7. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. Sethuraman VA; Bae YH J Control Release; 2007 Apr; 118(2):216-24. PubMed ID: 17239466 [TBL] [Abstract][Full Text] [Related]
8. [Synthesis of cell penetrating peptide decorated magnetic nanoparticles loading cisplatin for nasopharyngeal cancer therapy]. Quan LM; Zhong Y; Weng HH Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Jul; 32(13):963-968. PubMed ID: 29986554 [No Abstract] [Full Text] [Related]
9. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084 [TBL] [Abstract][Full Text] [Related]
10. Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. Tang J; Zhang L; Liu Y; Zhang Q; Qin Y; Yin Y; Yuan W; Yang Y; Xie Y; Zhang Z; He Q Int J Pharm; 2013 Sep; 454(1):31-40. PubMed ID: 23850793 [TBL] [Abstract][Full Text] [Related]
11. Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Koch AM; Reynolds F; Kircher MF; Merkle HP; Weissleder R; Josephson L Bioconjug Chem; 2003; 14(6):1115-21. PubMed ID: 14624624 [TBL] [Abstract][Full Text] [Related]
13. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent. Chen X; Zhang X; Wang HY; Chen Z; Wu FG Langmuir; 2016 Oct; 32(39):10126-10135. PubMed ID: 27597442 [TBL] [Abstract][Full Text] [Related]
14. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Liu L; Venkatraman SS; Yang YY; Guo K; Lu J; He B; Moochhala S; Kan L Biopolymers; 2008; 90(5):617-23. PubMed ID: 18412128 [TBL] [Abstract][Full Text] [Related]
15. Transport of surface-modified nanoparticles through cell monolayers. Koch AM; Reynolds F; Merkle HP; Weissleder R; Josephson L Chembiochem; 2005 Feb; 6(2):337-45. PubMed ID: 15651046 [TBL] [Abstract][Full Text] [Related]
16. Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes. Depan D; Misra RD Nanoscale; 2012 Oct; 4(20):6325-35. PubMed ID: 22941367 [TBL] [Abstract][Full Text] [Related]
17. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Albarran B; To R; Stayton PS Protein Eng Des Sel; 2005 Mar; 18(3):147-52. PubMed ID: 15820981 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. Wang H; Zhong CY; Wu JF; Huang YB; Liu CB J Control Release; 2010 Apr; 143(1):64-70. PubMed ID: 20025914 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. Barar J; Kafil V; Majd MH; Barzegari A; Khani S; Johari-Ahar M; Asgari D; Coukos G; Omidi Y J Nanobiotechnology; 2015 Mar; 13():26. PubMed ID: 25880772 [TBL] [Abstract][Full Text] [Related]