These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 22532080)
1. The study of nanoscratch and nanomachining on hard multilayer thin films using atomic force microscope. Huang JC; Li CL; Lee JW Scanning; 2012; 34(1):51-9. PubMed ID: 22532080 [TBL] [Abstract][Full Text] [Related]
2. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy. Huang JC; Weng YJ Scanning; 2014; 36(6):599-607. PubMed ID: 25241676 [TBL] [Abstract][Full Text] [Related]
3. Nanomachining of permalloy for fabricating nanoscale ferromagnetic structures using atomic force microscopy. Tseng AA; Shirakashi J; Nishimura S; Miyashita K; Li Z J Nanosci Nanotechnol; 2010 Jan; 10(1):456-66. PubMed ID: 20352877 [TBL] [Abstract][Full Text] [Related]
4. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films. Humood M; Chowdhury S; Song Y; Tzeng P; Grunlan JC; Polycarpou AA ACS Appl Mater Interfaces; 2016 May; 8(17):11128-38. PubMed ID: 27045231 [TBL] [Abstract][Full Text] [Related]
5. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures. Peng P; Shi T; Liao G; Tang Z J Nanosci Nanotechnol; 2010 Nov; 10(11):7287-90. PubMed ID: 21137916 [TBL] [Abstract][Full Text] [Related]
6. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe. Jiang X; Wu G; Zhou J; Wang S; Tseng AA; Du Z Nanoscale Res Lett; 2011 Sep; 6(1):518. PubMed ID: 21888633 [TBL] [Abstract][Full Text] [Related]
7. Investigation of nanoscratch processes in semiconductor materials for application to maskless patterning. Richter A; Kuswik P; Oszwaldowski M; Smith R J Nanosci Nanotechnol; 2008 Jun; 8(6):3020-9. PubMed ID: 18681041 [TBL] [Abstract][Full Text] [Related]
8. The functional width of the dentino-enamel junction determined by AFM-based nanoscratching. Habelitz S; Marshall SJ; Marshall GW; Balooch M J Struct Biol; 2001 Sep; 135(3):294-301. PubMed ID: 11722169 [TBL] [Abstract][Full Text] [Related]
9. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves. Al-Musawi RS; Brousseau EB; Geng Y; Borodich FM Nanotechnology; 2016 Sep; 27(38):385302. PubMed ID: 27532247 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Nanoscratch Mechanism of C-Plane Sapphire with the Aid of Molecular Dynamics Simulation of Hcp Crystal. Lin W; Yano N; Shimizu J; Zhou L; Onuki T; Ojima H Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361124 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of ferromagnetic nanoconstriction using atomic force microscopy nanoscratching. Jang K; Ishibashi Y; Iwata D; Suganuma H; Yamada T; Takemura Y J Nanosci Nanotechnol; 2011 Dec; 11(12):10945-8. PubMed ID: 22409031 [TBL] [Abstract][Full Text] [Related]
12. Interfacial Strength and Surface Damage Characteristics of Atomically Thin h-BN, MoS Tran Khac BC; DelRio FW; Chung KH ACS Appl Mater Interfaces; 2018 Mar; 10(10):9164-9177. PubMed ID: 29464947 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the morphological and fractal behavior at nanoscale of patterning lines by scratching in an atomic force microscope. da Fonseca Filho HD; Pires MP; de Souza PL; Matos RS; Prioli R Microsc Res Tech; 2022 Mar; 85(3):1046-1055. PubMed ID: 34723417 [TBL] [Abstract][Full Text] [Related]
14. Experimental and numerical study of electrochemical nanomachining using an AFM cantilever tip. Lee G; Jung H; Son J; Nam K; Kwon T; Lim G; Kim YH; Seo J; Lee SW; Yoon DS Nanotechnology; 2010 May; 21(18):185301. PubMed ID: 20378949 [TBL] [Abstract][Full Text] [Related]
15. High-rate tunable ultrasonic force regulated nanomachining lithography with an atomic force microscope. Zhang L; Dong J Nanotechnology; 2012 Mar; 23(8):085303. PubMed ID: 22293152 [TBL] [Abstract][Full Text] [Related]
16. Friction Force Microscopy Analysis of Self-Adaptive W-S-C Coatings: Nanoscale Friction and Wear. Zekonyte J; Polcar T ACS Appl Mater Interfaces; 2015 Sep; 7(38):21056-64. PubMed ID: 26340161 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation. Jiryaei Sharahi H; Egberts P; Kim S Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838 [TBL] [Abstract][Full Text] [Related]
19. Study of nanotribological properties of multilayer graphene by calibrated atomic force microscopy. Peng Y; Wang Z; Li C Nanotechnology; 2014 Aug; 25(30):305701. PubMed ID: 25002318 [TBL] [Abstract][Full Text] [Related]
20. Friction and Wear in Nanoscratching of Single Crystals: Effect of Adhesion and Plasticity. Hu J; Zeng Q Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]