These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities. Samanta SK; Pal A; Bhattacharya S Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602 [TBL] [Abstract][Full Text] [Related]
24. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
25. Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles. Basit H; Pal A; Sen S; Bhattacharya S Chemistry; 2008; 14(21):6534-45. PubMed ID: 18537217 [TBL] [Abstract][Full Text] [Related]
26. Polymorphism of amino acid-based dendrons: from organogels to microcrystals. Kuang GC; Teng MJ; Jia XR; Chen EQ; Wei Y Chem Asian J; 2011 May; 6(5):1163-70. PubMed ID: 21360681 [TBL] [Abstract][Full Text] [Related]
27. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Adhikari B; Nanda J; Banerjee A Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927 [TBL] [Abstract][Full Text] [Related]
28. Induction of supramolecular chirality in the self-assemblies of lipophilic pyrimidine derivatives by choice of the amino acid-based chiral spacer. Datta S; Samanta SK; Bhattacharya S Chemistry; 2013 Aug; 19(34):11364-73. PubMed ID: 23813546 [TBL] [Abstract][Full Text] [Related]
32. Effects of salt on the gelation mechanism of a D-sorbitol-based hydrogelator. Li J; Fan K; Niu L; Li Y; Song J J Phys Chem B; 2013 May; 117(19):5989-95. PubMed ID: 23611760 [TBL] [Abstract][Full Text] [Related]
35. Probing gelation ability for a library of dipeptide gelators. Awhida S; Draper ER; McDonald TO; Adams DJ J Colloid Interface Sci; 2015 Oct; 455():24-31. PubMed ID: 26047582 [TBL] [Abstract][Full Text] [Related]
36. A new pH and thermo-responsive chiral hydrogel for stimulated release. Shankar BV; Patnaik A J Phys Chem B; 2007 Aug; 111(31):9294-300. PubMed ID: 17629325 [TBL] [Abstract][Full Text] [Related]
37. Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification. Debnath S; Shome A; Dutta S; Das PK Chemistry; 2008; 14(23):6870-81. PubMed ID: 18642259 [TBL] [Abstract][Full Text] [Related]
38. An Easy Access to Organic Salt-Based Stimuli-Responsive and Multifunctional Supramolecular Hydrogels. Majumder J; Dastidar P Chemistry; 2016 Jun; 22(27):9267-76. PubMed ID: 27258667 [TBL] [Abstract][Full Text] [Related]
39. Studies on a new class of organogelator containing 2-anthracenecarboxylic acid: influence of gelator and solvent on stereochemistry of the photodimers. Dawn A; Fujita N; Haraguchi S; Sada K; Tamaru S; Shinkai S Org Biomol Chem; 2009 Nov; 7(21):4378-85. PubMed ID: 19830286 [TBL] [Abstract][Full Text] [Related]
40. Soft hydrogels from nanotubes of poly(ethylene oxide)-tetraphenylalanine conjugates prepared by click chemistry. Tzokova N; Fernyhough CM; Topham PD; Sandon N; Adams DJ; Butler MF; Armes SP; Ryan AJ Langmuir; 2009 Feb; 25(4):2479-85. PubMed ID: 19161273 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]