These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22532808)

  • 1. dyschronic, a Drosophila homolog of a deaf-blindness gene, regulates circadian output and Slowpoke channels.
    Jepson JE; Shahidullah M; Lamaze A; Peterson D; Pan H; Koh K
    PLoS Genet; 2012; 8(4):e1002671. PubMed ID: 22532808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of synaptic development and function by the Drosophila PDZ protein Dyschronic.
    Jepson JE; Shahidullah M; Liu D; le Marchand SJ; Liu S; Wu MN; Levitan IB; Dalva MB; Koh K
    Development; 2014 Dec; 141(23):4548-57. PubMed ID: 25359729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic Regulation of Circadian Output and Synaptic Development by JETLAG and the DYSCHRONIC-SLOWPOKE Complex.
    Lamaze A; Jepson JEC; Akpoghiran O; Koh K
    iScience; 2020 Feb; 23(2):100845. PubMed ID: 32058958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slowpoke functions in circadian output cells to regulate rest:activity rhythms.
    Ruiz D; Bajwa ST; Vanani N; Bajwa TA; Cavanaugh DJ
    PLoS One; 2021; 16(3):e0249215. PubMed ID: 33765072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker.
    Lear BC; Lin JM; Keath JR; McGill JJ; Raman IM; Allada R
    Neuron; 2005 Dec; 48(6):965-76. PubMed ID: 16364900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UNC79 and UNC80, putative auxiliary subunits of the NARROW ABDOMEN ion channel, are indispensable for robust circadian locomotor rhythms in Drosophila.
    Lear BC; Darrah EJ; Aldrich BT; Gebre S; Scott RL; Nash HA; Allada R
    PLoS One; 2013; 8(11):e78147. PubMed ID: 24223770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLOB, a SLOWPOKE channel binding protein, regulates insulin pathway signaling and metabolism in Drosophila.
    Sheldon AL; Zhang J; Fei H; Levitan IB
    PLoS One; 2011; 6(8):e23343. PubMed ID: 21850269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion.
    Kadas D; Ryglewski S; Duch C
    J Physiol; 2015 Nov; 593(22):4871-88. PubMed ID: 26332699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMP-Activated Protein Kinase Regulates Circadian Rhythm by Affecting CLOCK in
    Cho E; Kwon M; Jung J; Kang DH; Jin S; Choi SE; Kang Y; Kim EY
    J Neurosci; 2019 May; 39(18):3537-3550. PubMed ID: 30819799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior.
    Ceriani MF; Hogenesch JB; Yanovsky M; Panda S; Straume M; Kay SA
    J Neurosci; 2002 Nov; 22(21):9305-19. PubMed ID: 12417656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila clock can generate ectopic circadian clocks.
    Zhao J; Kilman VL; Keegan KP; Peng Y; Emery P; Rosbash M; Allada R
    Cell; 2003 Jun; 113(6):755-66. PubMed ID: 12809606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonreciprocal homeostatic compensation in
    Kim EZ; Vienne J; Rosbash M; Griffith LC
    J Neurophysiol; 2017 Jun; 117(6):2125-2136. PubMed ID: 28298298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dstac is required for normal circadian activity rhythms in Drosophila.
    Hsu IU; Linsley JW; Varineau JE; Shafer OT; Kuwada JY
    Chronobiol Int; 2018 Jul; 35(7):1016-1026. PubMed ID: 29621409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila.
    Gunawardhana KL; Hardin PE
    Curr Biol; 2017 Nov; 27(22):3442-3453.e4. PubMed ID: 29103936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression.
    Blanchardon E; Grima B; Klarsfeld A; Chélot E; Hardin PE; Préat T; Rouyer F
    Eur J Neurosci; 2001 Mar; 13(5):871-88. PubMed ID: 11264660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian Rhythms and Sleep in
    Dubowy C; Sehgal A
    Genetics; 2017 Apr; 205(4):1373-1397. PubMed ID: 28360128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achilles-Mediated and Sex-Specific Regulation of Circadian mRNA Rhythms in Drosophila.
    Li J; Yu RY; Emran F; Chen BE; Hughes ME
    J Biol Rhythms; 2019 Apr; 34(2):131-143. PubMed ID: 30803307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of central clock function in
    Delventhal R; O'Connor RM; Pantalia MM; Ulgherait M; Kim HX; Basturk MK; Canman JC; Shirasu-Hiza M
    Elife; 2019 Oct; 8():. PubMed ID: 31613218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila.
    Kumar S; Chen D; Jang C; Nall A; Zheng X; Sehgal A
    Nat Commun; 2014 Dec; 5():5697. PubMed ID: 25511299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.