These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 22533085)
1. Selection of oviposition sites by female Aedes aegypti exposed to two larvicides. Quiroz-Martínez H; Garza-Rodríguez MI; Trujillo-González MI; Zepeda-Cavazos IG; Siller-Aguillon I; Martínez-Perales JF; Rodríguez-Castro VA J Am Mosq Control Assoc; 2012 Mar; 28(1):47-9. PubMed ID: 22533085 [TBL] [Abstract][Full Text] [Related]
2. Comparison of novaluron, pyriproxyfen, spinosad and temephos as larvicides against Aedes aegypti in Chiapas, Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Quiroz-Martínez H; Torres-Monzón JA; Williams T Salud Publica Mex; 2020; 62(4):424-431. PubMed ID: 32549084 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil. Dos Santos Dias L; Macoris ML; Andrighetti MT; Otrera VC; Dias AD; Bauzer LG; Rodovalho CM; Martins AJ; Lima JB PLoS One; 2017; 12(3):e0173689. PubMed ID: 28301568 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of spinosad and temephos for the control of mosquito larvae at a tire dump in Allende, Nuevo Leon, Mexico. Garza-Robledo AA; Martínez-Perales JF; Rodríguez-Castro VA; Quiroz-Martínez H J Am Mosq Control Assoc; 2011 Dec; 27(4):404-7. PubMed ID: 22329273 [TBL] [Abstract][Full Text] [Related]
5. Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Marina CF; Bond JG; Casas M; Muñoz J; Orozco A; Valle J; Williams T Pest Manag Sci; 2011 Jan; 67(1):114-21. PubMed ID: 21162151 [TBL] [Abstract][Full Text] [Related]
6. Spinosad, a naturally derived insecticide, for control of Aedes aegypti (Diptera: Culicidae): efficacy, persistence, and elicited oviposition response. Pérez CM; Marina CF; Bond JG; Rojas JC; Valle J; Williams T J Med Entomol; 2007 Jul; 44(4):631-8. PubMed ID: 17695018 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of larvicides for the control of dengue, Zika, and chikungunya vectors in an urban cemetery in southern Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Quiroz-Martínez H; Torres-Monzón JA; Williams T Parasitol Res; 2018 Jun; 117(6):1941-1952. PubMed ID: 29713901 [TBL] [Abstract][Full Text] [Related]
8. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides. Gonzalez PV; Harburguer L; González-Audino PA; Masuh HM Parasitol Res; 2016 Jun; 115(6):2185-90. PubMed ID: 26922177 [TBL] [Abstract][Full Text] [Related]
9. The Effect of Insecticidal Stress on Reproductive Output of Susceptible and Field Strains of Aedes aegypti (Diptera: Culicidae). Bong LJ; Tu WC; Neoh KB; Huang CG; Ting RX J Med Entomol; 2018 Jan; 55(1):36-42. PubMed ID: 29040719 [TBL] [Abstract][Full Text] [Related]
10. Investigation of mosquito oviposition pheromone as lethal lure for the control of Aedes aegypti (L.) (Diptera: Culicidae). Ong SQ; Jaal Z Parasit Vectors; 2015 Jan; 8():28. PubMed ID: 25588346 [TBL] [Abstract][Full Text] [Related]
11. Effects of sublethal dosages of Abate upon adult fecundity and longevity of Aedes aegypti. Reyes-Villanueva F; Juarez-Eguia M; Flores-Leal A J Am Mosq Control Assoc; 1990 Dec; 6(4):739-41. PubMed ID: 1711574 [TBL] [Abstract][Full Text] [Related]
12. Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico. Marina CF; Bond JG; Muñoz J; Valle J; Novelo-Gutiérrez R; Williams T Parasit Vectors; 2014 Jan; 7():55. PubMed ID: 24479683 [TBL] [Abstract][Full Text] [Related]
13. Experience- and age-mediated oviposition behaviour in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti). Ruktanonchai NW; Lounibos LP; Smith DL; Allan SA Med Vet Entomol; 2015 Sep; 29(3):255-62. PubMed ID: 25982411 [TBL] [Abstract][Full Text] [Related]
14. A Small-Scale Investigation Into the Effect of A Larvicidal Oil On Oviposition Site Preference By Aedes aegypti. Hall MT; Briley AC; Lindroth EJ; Fajardo JD; Cilek JE; Richardson AG J Am Mosq Control Assoc; 2017 Dec; 33(4):355-357. PubMed ID: 29369032 [TBL] [Abstract][Full Text] [Related]
15. Aedes aegypti resistance to temephos in Argentina. Seccacini E; Lucia A; Zerba E; Licastro S; Masuh H J Am Mosq Control Assoc; 2008 Dec; 24(4):608-9. PubMed ID: 19181076 [TBL] [Abstract][Full Text] [Related]
16. Weekly variation on susceptibility status of Aedes mosquitoes against temephos in Selangor, Malaysia. Chen CD; Nazni WA; Lee HL; Sofian-Azirun M Trop Biomed; 2005 Dec; 22(2):195-206. PubMed ID: 16883288 [TBL] [Abstract][Full Text] [Related]
17. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Araujo AF; Ribeiro-Paes JT; Deus JT; Cavalcanti SC; Nunes Rde S; Alves PB; Macoris Mde L Mem Inst Oswaldo Cruz; 2016 Jul; 111(7):443-9. PubMed ID: 27384083 [TBL] [Abstract][Full Text] [Related]
18. Oviposition and olfaction responses of Aedes aegypti mosquitoes to insecticides. Canyon DV; Muller R Trop Biomed; 2013 Dec; 30(4):691-8. PubMed ID: 24522139 [TBL] [Abstract][Full Text] [Related]
19. An anti-mosquito mixture for domestic use, combining a fertiliser and a chemical or biological larvicide. Darriet F Pest Manag Sci; 2016 Jul; 72(7):1340-5. PubMed ID: 26414239 [TBL] [Abstract][Full Text] [Related]
20. Aedes aegypti larvae treated with spinosad produce adults with damaged midgut and reduced fecundity. Fernandes KM; Tomé HVV; Miranda FR; Gonçalves WG; Pascini TV; Serrão JE; Martins GF Chemosphere; 2019 Apr; 221():464-470. PubMed ID: 30654260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]