BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22533353)

  • 1. Exploring key parameters to detect subtle ligand-induced protein conformational changes using traveling wave ion mobility mass spectrometry.
    Atmanene C; Petiot-Bécard S; Zeyer D; Van Dorsselaer A; Vivat Hannah V; Sanglier-Cianférani S
    Anal Chem; 2012 Jun; 84(11):4703-10. PubMed ID: 22533353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.
    Jurneczko E; Kalapothakis J; Campuzano ID; Morris M; Barran PE
    Anal Chem; 2012 Oct; 84(20):8524-31. PubMed ID: 22974196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections.
    Campuzano I; Bush MF; Robinson CV; Beaumont C; Richardson K; Kim H; Kim HI
    Anal Chem; 2012 Jan; 84(2):1026-33. PubMed ID: 22141445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans.
    Pagel K; Harvey DJ
    Anal Chem; 2013 May; 85(10):5138-45. PubMed ID: 23621517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies.
    Bush MF; Campuzano ID; Robinson CV
    Anal Chem; 2012 Aug; 84(16):7124-30. PubMed ID: 22845859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.
    Li H; Li C
    J Comput Chem; 2010 Jul; 31(10):2014-22. PubMed ID: 20166125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes.
    Stojko J; Fieulaine S; Petiot-Bécard S; Van Dorsselaer A; Meinnel T; Giglione C; Cianférani S
    Analyst; 2015 Nov; 140(21):7234-45. PubMed ID: 26401526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions.
    Zhong Y; Hyung SJ; Ruotolo BT
    Analyst; 2011 Sep; 136(17):3534-41. PubMed ID: 21445388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of small molecule inhibitors of the Bcl-2 family.
    Acoca S; Cui Q; Shore GC; Purisima EO
    Proteins; 2011 Sep; 79(9):2624-36. PubMed ID: 21721047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology.
    Bush MF; Hall Z; Giles K; Hoyes J; Robinson CV; Ruotolo BT
    Anal Chem; 2010 Nov; 82(22):9557-65. PubMed ID: 20979392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers.
    Salbo R; Bush MF; Naver H; Campuzano I; Robinson CV; Pettersson I; Jørgensen TJ; Haselmann KF
    Rapid Commun Mass Spectrom; 2012 May; 26(10):1181-93. PubMed ID: 22499193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QconCAT standard for calibration of ion mobility-mass spectrometry systems.
    Chawner R; McCullough B; Giles K; Barran PE; Gaskell SJ; Eyers CE
    J Proteome Res; 2012 Nov; 11(11):5564-72. PubMed ID: 22985290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperonin complexes monitored by ion mobility mass spectrometry.
    van Duijn E; Barendregt A; Synowsky S; Versluis C; Heck AJ
    J Am Chem Soc; 2009 Feb; 131(4):1452-9. PubMed ID: 19138114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family.
    Lee EF; Czabotar PE; Smith BJ; Deshayes K; Zobel K; Colman PM; Fairlie WD
    Cell Death Differ; 2007 Sep; 14(9):1711-3. PubMed ID: 17572662
    [No Abstract]   [Full Text] [Related]  

  • 15. Exploring the Conformational Landscape of Poly(l-lysine) Dendrimers Using Ion Mobility Mass Spectrometry.
    Benoit F; Wang X; Dai J; Geue N; England RM; Bristow AWT; Barran PE
    Anal Chem; 2024 Jun; 96(23):9390-9398. PubMed ID: 38812282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision cross sections of high-mannose N-glycans in commonly observed adduct states--identification of gas-phase conformers unique to [M-H](-) ions.
    Struwe WB; Benesch JL; Harvey DJ; Pagel K
    Analyst; 2015 Oct; 140(20):6799-803. PubMed ID: 26159123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of phospholipids and peptides directly from tissue sections by MALDI traveling-wave ion mobility-mass spectrometry.
    Ridenour WB; Kliman M; McLean JA; Caprioli RM
    Anal Chem; 2010 Mar; 82(5):1881-9. PubMed ID: 20146447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structurally selective imaging mass spectrometry by imaging ion mobility-mass spectrometry.
    McLean JA; Fenn LS; Enders JR
    Methods Mol Biol; 2010; 656():363-83. PubMed ID: 20680602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A uniform field ion mobility study of melittin and implications of low-field mobility for resolving fine cross-sectional detail in peptide and protein experiments.
    May JC; McLean JA
    Proteomics; 2015 Aug; 15(16):2862-71. PubMed ID: 25884242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-wave ion mobility-mass spectrometry: basic experimental procedures for protein complex analysis.
    Michaelevski I; Kirshenbaum N; Sharon M
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20729801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.