BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22533378)

  • 1. Use of cell-penetrating-peptides in oligonucleotide splice switching therapy.
    El Andaloussi SA; Hammond SM; Mäger I; Wood MJ
    Curr Gene Ther; 2012 Jun; 12(3):161-78. PubMed ID: 22533378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of therapeutic splice-switching oligonucleotides.
    Disterer P; Kryczka A; Liu Y; Badi YE; Wong JJ; Owen JS; Khoo B
    Hum Gene Ther; 2014 Jul; 25(7):587-98. PubMed ID: 24826963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease.
    Sardone V; Zhou H; Muntoni F; Ferlini A; Falzarano MS
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28379182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes.
    Carvalho C; Carmo-Fonseca M
    Methods Mol Biol; 2020; 2161():37-50. PubMed ID: 32681504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy.
    Falzarano MS; Passarelli C; Ferlini A
    Nucleic Acid Ther; 2014 Feb; 24(1):87-100. PubMed ID: 24506782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes.
    Wilton SD; Fletcher S
    Curr Gene Ther; 2011 Aug; 11(4):259-75. PubMed ID: 21453280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide vectors for the nonviral delivery of nucleic acids.
    Hoyer J; Neundorf I
    Acc Chem Res; 2012 Jul; 45(7):1048-56. PubMed ID: 22455499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Penetrating Peptide Conjugates of Steric Blocking Oligonucleotides as Therapeutics for Neuromuscular Diseases from a Historical Perspective to Current Prospects of Treatment.
    Gait MJ; Arzumanov AA; McClorey G; Godfrey C; Betts C; Hammond S; Wood MJA
    Nucleic Acid Ther; 2019 Feb; 29(1):1-12. PubMed ID: 30307373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Cell-Penetrating Peptide Delivery of Antisense Oligonucleotides for Therapeutic Efficacy in Spinal Muscular Atrophy.
    Hammond SM; Abendroth F; Gait MJ; Wood MJA
    Methods Mol Biol; 2019; 2036():221-236. PubMed ID: 31410800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of PepFect peptides for the delivery of splice-correcting oligonucleotides.
    Andaloussi SE; Lehto T; Lundin P; Langel U
    Methods Mol Biol; 2011; 683():361-73. PubMed ID: 21053143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery.
    Margus H; Padari K; Pooga M
    Mol Ther; 2012 Mar; 20(3):525-33. PubMed ID: 22233581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delivery of therapeutic oligonucleotides with cell penetrating peptides.
    Boisguérin P; Deshayes S; Gait MJ; O'Donovan L; Godfrey C; Betts CA; Wood MJ; Lebleu B
    Adv Drug Deliv Rev; 2015 Jun; 87():52-67. PubMed ID: 25747758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of RNA Splicing by Oligonucleotides: Mechanisms of Action and Therapeutic Implications.
    Sergeeva OV; Shcherbinina EY; Shomron N; Zatsepin TS
    Nucleic Acid Ther; 2022 Jun; 32(3):123-138. PubMed ID: 35166605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide.
    Haque US; Yokota T
    Cells; 2023 Oct; 12(19):. PubMed ID: 37830609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Orthogonally Hydrocarbon-Modified Cell-Penetrating Peptide Nanoparticles Mediate Efficient Delivery of Splice-Switching Antisense Oligonucleotides In Vitro and In Vivo.
    Bazaz S; Lehto T; Tops R; Gissberg O; Gupta D; Bestas B; Bost J; Wiklander OPB; Sork H; Zaghloul EM; Mamand DR; Hällbrink M; Sillard R; Saher O; Ezzat K; Smith CIE; Andaloussi SE; Lehto T
    Biomedicines; 2021 Aug; 9(8):. PubMed ID: 34440250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invention and Early History of Exon Skipping and Splice Modulation.
    Lim KRQ; Yokota T
    Methods Mol Biol; 2018; 1828():3-30. PubMed ID: 30171532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A non-covalent strategy combining cationic lipids and CPPs to enhance the delivery of splice correcting oligonucleotides.
    Trabulo S; Resina S; Simões S; Lebleu B; Pedroso de Lima MC
    J Control Release; 2010 Jul; 145(2):149-58. PubMed ID: 20362021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing therapy for neuromuscular disease.
    Douglas AG; Wood MJ
    Mol Cell Neurosci; 2013 Sep; 56():169-85. PubMed ID: 23631896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.