BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22533378)

  • 21. Targeting RNA to treat neuromuscular disease.
    Muntoni F; Wood MJ
    Nat Rev Drug Discov; 2011 Aug; 10(8):621-37. PubMed ID: 21804598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts.
    Tajik-Ahmadabad B; Polyzos A; Separovic F; Shabanpoor F
    Int J Pharm; 2017 Oct; 532(1):21-28. PubMed ID: 28864392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Therapeutic potential of splice-switching oligonucleotides.
    Bauman J; Jearawiriyapaisarn N; Kole R
    Oligonucleotides; 2009 Mar; 19(1):1-13. PubMed ID: 19125639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide nanoparticles for oligonucleotide delivery.
    Lehto T; Ezzat K; Langel U
    Prog Mol Biol Transl Sci; 2011; 104():397-426. PubMed ID: 22093225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey.
    Oberemok VV; Laikova KV; Repetskaya AI; Kenyo IM; Gorlov MV; Kasich IN; Krasnodubets AM; Gal'chinsky NV; Fomochkina II; Zaitsev AS; Bekirova VV; Seidosmanova EE; Dydik KI; Meshcheryakova AO; Nazarov SA; Smagliy NN; Chelengerova EL; Kulanova AA; Deri K; Subbotkin MV; Useinov RZ; Shumskykh MN; Kubyshkin AV
    Molecules; 2018 May; 23(6):. PubMed ID: 29844255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Splice-switching antisense oligonucleotides as therapeutic drugs.
    Havens MA; Hastings ML
    Nucleic Acids Res; 2016 Aug; 44(14):6549-63. PubMed ID: 27288447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell-penetrating peptides-based strategies for the delivery of splice redirecting antisense oligonucleotides.
    El Andaloussi S; Said Hassane F; Boisguerin P; Sillard R; Langel U; Lebleu B
    Methods Mol Biol; 2011; 764():75-89. PubMed ID: 21748634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the cellular trafficking of splice redirecting oligonucleotides complexed with chemically modified cell-penetrating peptides.
    Hassane FS; Abes R; El Andaloussi S; Lehto T; Sillard R; Langel U; Lebleu B
    J Control Release; 2011 Jul; 153(2):163-72. PubMed ID: 21536086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New developments in exon skipping and splice modulation therapies for neuromuscular diseases.
    Touznik A; Lee JJ; Yokota T
    Expert Opin Biol Ther; 2014 Jun; 14(6):809-19. PubMed ID: 24620745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-throughput screening assay for the functional delivery of splice-switching oligonucleotides in human melanoma cells.
    Dean JM; DeLong RK
    Methods Mol Biol; 2015; 1297():187-96. PubMed ID: 25896004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery.
    Dowaidar M; Abdelhamid HN; Hällbrink M; Freimann K; Kurrikoff K; Zou X; Langel Ü
    Sci Rep; 2017 Aug; 7(1):9159. PubMed ID: 28831162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translational development of splice-modifying antisense oligomers.
    Fletcher S; Bellgard MI; Price L; Akkari AP; Wilton SD
    Expert Opin Biol Ther; 2017 Jan; 17(1):15-30. PubMed ID: 27805416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of 2',4'-BNA/LNA-Based Oligonucleotides for Splicing Modulation In Vitro.
    Shimo T; Obika S
    Methods Mol Biol; 2018; 1828():395-411. PubMed ID: 30171556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy.
    Hammond SM; Hazell G; Shabanpoor F; Saleh AF; Bowerman M; Sleigh JN; Meijboom KE; Zhou H; Muntoni F; Talbot K; Gait MJ; Wood MJ
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10962-7. PubMed ID: 27621445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unraveling the Mechanisms of Peptide-Mediated Delivery of Nucleic Acids Using Electron Microscopy.
    Margus H; Juks C; Pooga M
    Methods Mol Biol; 2015; 1324():149-62. PubMed ID: 26202268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptides for nucleic acid delivery.
    Lehto T; Ezzat K; Wood MJA; El Andaloussi S
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt A):172-182. PubMed ID: 27349594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CPP-directed oligonucleotide exon skipping in animal models of Duchenne muscular dystrophy.
    Yin H; Moulton H; Betts C; Wood M
    Methods Mol Biol; 2011; 683():321-38. PubMed ID: 21053140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules.
    Farkhani SM; Valizadeh A; Karami H; Mohammadi S; Sohrabi N; Badrzadeh F
    Peptides; 2014 Jul; 57():78-94. PubMed ID: 24795041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treating Disease at the RNA Level with Oligonucleotides.
    Levin AA
    N Engl J Med; 2019 Jan; 380(1):57-70. PubMed ID: 30601736
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.