BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22533450)

  • 1. Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions.
    Cai L; Lu J; Sheen V; Wang S
    Biomacromolecules; 2012 May; 13(5):1663-74. PubMed ID: 22533450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoting nerve cell functions on hydrogels grafted with poly(L-lysine).
    Cai L; Lu J; Sheen V; Wang S
    Biomacromolecules; 2012 Feb; 13(2):342-9. PubMed ID: 22251248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells.
    Royce Hynes S; McGregor LM; Ford Rauch M; Lavik EB
    J Biomater Sci Polym Ed; 2007; 18(8):1017-30. PubMed ID: 17705996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation.
    Hynes SR; Rauch MF; Bertram JP; Lavik EB
    J Biomed Mater Res A; 2009 May; 89(2):499-509. PubMed ID: 18435406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-Lysine) for applications in cartilage tissue engineering.
    Lam J; Clark EC; Fong EL; Lee EJ; Lu S; Tabata Y; Mikos AG
    Biomaterials; 2016 Mar; 83():332-46. PubMed ID: 26799859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate Hydrogel Modified with a Ligand Interacting with α3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro.
    Wen H; Xiao W; Biswas S; Cong ZQ; Liu XM; Lam KS; Liao YH; Deng W
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5821-5833. PubMed ID: 30645095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cationic Hydrogels Modulate Neural Stem and Progenitor Cell Proliferation and Differentiation Behavior in Dependence of Cationic Moiety Concentration in 2D Cell Culture.
    Glotzbach K; Stamm N; Weberskirch R; Faissner A
    ACS Biomater Sci Eng; 2024 May; 10(5):3148-3163. PubMed ID: 38227432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering hydrogels with affinity-bound laminin as 3D neural stem cell culture systems.
    Barros D; Conde-Sousa E; Gonçalves AM; Han WM; García AJ; Amaral IF; Pêgo AP
    Biomater Sci; 2019 Nov; 7(12):5338-5349. PubMed ID: 31620727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells.
    Aurand ER; Wagner JL; Shandas R; Bjugstad KB
    Stem Cell Res; 2014 Jan; 12(1):11-23. PubMed ID: 24141109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grafting of poly(ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA.
    Kano A; Moriyama K; Yamano T; Nakamura I; Shimada N; Maruyama A
    J Control Release; 2011 Jan; 149(1):2-7. PubMed ID: 20005270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a targeted gene carrier, lactose-polyethylene glycol-grafted poly-L-lysine and its complex with plasmid DNA.
    Choi YH; Liu F; Choi JS; Kim SW; Park JS
    Hum Gene Ther; 1999 Nov; 10(16):2657-65. PubMed ID: 10566893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-tapgeted gene carrier.
    Choi YH; Liu F; Park JS; Kim SW
    Bioconjug Chem; 1998; 9(6):708-18. PubMed ID: 9815164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and Molecular Insights into the Divergence of Neural Stem Cells on Matrigel and Poly-l-lysine Interfaces.
    Wu C; Liu S; Zhou L; Chen Z; Yang Q; Cui Y; Chen M; Li L; Ke B; Li C; Yin S
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):31922-31935. PubMed ID: 38874539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitating neural stem/progenitor cell niche calibration for neural lineage differentiation by polyelectrolyte multilayer films.
    Lee IC; Wu YC
    Colloids Surf B Biointerfaces; 2014 Sep; 121():54-65. PubMed ID: 24937134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of PC12 cell response.
    Zustiak SP; Pubill S; Ribeiro A; Leach JB
    Biotechnol Prog; 2013; 29(5):1255-64. PubMed ID: 24474590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells.
    Seeto WJ; Tian Y; Lipke EA
    Acta Biomater; 2013 Sep; 9(9):8279-89. PubMed ID: 23770139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lubricated biodegradable polymer networks for regulating nerve cell behavior and fabricating nerve conduits with a compositional gradient.
    Cai L; Lu J; Sheen V; Wang S
    Biomacromolecules; 2012 Feb; 13(2):358-68. PubMed ID: 22206477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces.
    Tosatti S; Schwartz Z; Campbell C; Cochran DL; VandeVondele S; Hubbell JA; Denzer A; Simpson J; Wieland M; Lohmann CH; Textor M; Boyan BD
    J Biomed Mater Res A; 2004 Mar; 68(3):458-72. PubMed ID: 14762925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of poly (L-lysine) modified silk fibroin film on the growth and differentiation of neural stem cells].
    Zhao X; Deng L; Deng Y; Wan Y; Zhang L
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1650-1659. PubMed ID: 30394032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings.
    Zeng G; Ogaki R; Meyer RL
    Acta Biomater; 2015 Sep; 24():64-73. PubMed ID: 26093067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.