BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22533519)

  • 1. Role of pK(a) of nucleobases in the origins of chemical evolution.
    Krishnamurthy R
    Acc Chem Res; 2012 Dec; 45(12):2035-44. PubMed ID: 22533519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.
    Liu Z; Wang D; Cao M; Han Y; Xu H; Wang Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15078-87. PubMed ID: 26106937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations of pKa's and redox potentials of nucleobases with explicit waters and polarizable continuum solvation.
    Thapa B; Schlegel HB
    J Phys Chem A; 2015 May; 119(21):5134-44. PubMed ID: 25291241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency and hydrogen bonding of nucleobase homopairs in small molecule crystals.
    Cabaj MK; Dominiak PM
    Nucleic Acids Res; 2020 Sep; 48(15):8302-8319. PubMed ID: 32725210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.
    Takezawa Y; Shionoya M
    Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrazolylborate-zinc-nucleobase-complexes, 2:(1) preparations and structures of Tp(Cum,Me)Zn and Tp(Ph,Me)Zn complexes.
    Badura D; Vahrenkamp H
    Inorg Chem; 2002 Nov; 41(23):6013-9. PubMed ID: 12425627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wobble base-pairing in codon-anticodon interactions: a theoretical modelling study.
    Mangang SU; Lyngdoh RH
    Indian J Biochem Biophys; 2001; 38(1-2):115-9. PubMed ID: 11563322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemphyschem; 2006 Sep; 7(9):1971-9. PubMed ID: 16888742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the aromatic character of the heterocyclic bases of DNA and RNA.
    Cyrański MK; Gilski M; Jaskólski M; Krygowski TM
    J Org Chem; 2003 Oct; 68(22):8607-13. PubMed ID: 14575493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. At nonzero temperatures, stacked structures of methylated nucleic acid base pairs and microhydrated nonmethylated nucleic acid base pairs are favored over planar hydrogen-bonded structures: a molecular dynamics simulations study.
    Kabelác M; Hobza P
    Chemistry; 2001 May; 7(10):2067-74. PubMed ID: 11411979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The many facets of adenine: coordination, crystal patterns, and catalysis.
    Verma S; Mishra AK; Kumar J
    Acc Chem Res; 2010 Jan; 43(1):79-91. PubMed ID: 19719100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Systems Derived from Nucleobase Self-assembly.
    Del Prado A; González-Rodríguez D; Wu YL
    ChemistryOpen; 2020 Apr; 9(4):409-430. PubMed ID: 32257750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].
    Petrenko YM
    Biofizika; 2015; 60(5):853-60. PubMed ID: 26591595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Janus-type AT nucleosides: synthesis, solid and solution state structures.
    Pan MY; Hang W; Zhao XJ; Zhao H; Deng PC; Xing ZH; Qing Y; He Y
    Org Biomol Chem; 2011 Aug; 9(16):5692-702. PubMed ID: 21709903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base pairs with 5-chloroorotic acid and comparison with the natural nucleobase. Structural and spectroscopic study, and three suggested antiviral modified nucleosides.
    Palafox MA; Kattan D; de Pedraza Velasco ML; Isasi J; Rani K; Singh SP; Vats JK; Rastogi VK
    J Biomol Struct Dyn; 2024 Jul; 42(10):4956-4984. PubMed ID: 37403335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unnatural nucleosides with unusual base pairing properties.
    Bergstrom DE
    Curr Protoc Nucleic Acid Chem; 2001 Aug; Chapter 1():Unit 1.4. PubMed ID: 18428819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine protonation in domain B of the hairpin ribozyme.
    Ravindranathan S; Butcher SE; Feigon J
    Biochemistry; 2000 Dec; 39(51):16026-32. PubMed ID: 11123930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of substituents and the environment on the NMR shielding constants of supramolecular complexes based on A-T and A-U base pairs.
    Castro AC; Swart M; Guerra CF
    Phys Chem Chem Phys; 2017 May; 19(21):13496-13502. PubMed ID: 28492643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative DNA base pairing through metal coordination.
    Clever GH; Shionoya M
    Met Ions Life Sci; 2012; 10():269-94. PubMed ID: 22210343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.