These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22533519)

  • 41. Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study.
    Halder A; Halder S; Bhattacharyya D; Mitra A
    Phys Chem Chem Phys; 2014 Sep; 16(34):18383-96. PubMed ID: 25070186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Base-pairing mediated non-covalent polymers.
    Fathalla M; Lawrence CM; Zhang N; Sessler JL; Jayawickramarajah J
    Chem Soc Rev; 2009 Jun; 38(6):1608-20. PubMed ID: 19587956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical description of the coding potential of diamino-5-formamidopyrimidines.
    Cysewski P; Oliński R
    Z Naturforsch C J Biosci; 1999; 54(3-4):239-45. PubMed ID: 10349742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nucleobases as supramolecular motifs.
    Sivakova S; Rowan SJ
    Chem Soc Rev; 2005 Jan; 34(1):9-21. PubMed ID: 15643486
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs.
    Halder A; Bhattacharya S; Datta A; Bhattacharyya D; Mitra A
    Phys Chem Chem Phys; 2015 Oct; 17(39):26249-63. PubMed ID: 26382322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD(T) levels.
    Rejnek J; Hobza P
    J Phys Chem B; 2007 Jan; 111(3):641-5. PubMed ID: 17228922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calculated pK(a)'s of the DNA base radical ions.
    Close DM
    J Phys Chem A; 2013 Jan; 117(2):473-80. PubMed ID: 23282368
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational flexibility and base-pairing tendency of the tobacco carcinogen O6-[4-oxo-4-(3-pyridyl)butyl]guanine.
    Wilson KA; Szemethy KG; Wetmore SD
    Biophys Chem; 2017 Sep; 228():25-37. PubMed ID: 28654813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA-specific selectivity in pairing of model nucleobases in the solid state.
    Stolar T; Lukin S; Etter M; Rajić Linarić M; UŽarević K; Meštrović E; Halasz I
    Chem Commun (Camb); 2020 Nov; 56(88):13524-13527. PubMed ID: 32902525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silver- and gold-mediated nucleobase bonding.
    Acioli PH; Srinivas S
    J Mol Model; 2014 Aug; 20(8):2391. PubMed ID: 25107359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of base pairs.
    Daido M; Kawashima Y; Tachikawa M
    J Comput Chem; 2013 Oct; 34(28):2403-11. PubMed ID: 23913712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polymorphic Pairing Configurations of Guanine and Cytosine at the Water-HOPG Interface.
    Jin J; Li S; Wang Z; Lu Y; Liu X; Wang L
    Langmuir; 2021 Mar; 37(12):3761-3765. PubMed ID: 33724026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A historical account of Hoogsteen base-pairs in duplex DNA.
    Nikolova EN; Zhou H; Gottardo FL; Alvey HS; Kimsey IJ; Al-Hashimi HM
    Biopolymers; 2013 Dec; 99(12):955-68. PubMed ID: 23818176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.
    Czyznikowska Z; Góra RW; Zaleśny R; Lipkowski P; Jarzembska KN; Dominiak PM; Leszczynski J
    J Phys Chem B; 2010 Jul; 114(29):9629-44. PubMed ID: 20604521
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Melting of nucleobases. Getting the cutting edge of "Walden's Rule".
    Abdelaziz A; Zaitsau DH; Kuratieva NV; Verevkin SP; Schick C
    Phys Chem Chem Phys; 2019 Jun; 21(24):12787-12797. PubMed ID: 30888011
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study.
    Meyer M; Sühnel J
    J Biomol Struct Dyn; 2003 Feb; 20(4):507-17. PubMed ID: 12529150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unnatural nucleosides with unusual base pairing properties.
    Bergstrom DE
    Curr Protoc Nucleic Acid Chem; 2009 Jun; Chapter 1():1.4.1-1.4.32. PubMed ID: 19488968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pairing interactions between nucleobases and ligands in aptamer:ligand complexes of riboswitches: crystal structure analysis, classification, optimal structures, and accurate interaction energies.
    Seelam PP; Mitra A; Sharma P
    RNA; 2019 Oct; 25(10):1274-1290. PubMed ID: 31315914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The UV absorption of nucleobases: semi-classical ab initio spectra simulations.
    Barbatti M; Aquino AJ; Lischka H
    Phys Chem Chem Phys; 2010 May; 12(19):4959-67. PubMed ID: 20445902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.