BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22533614)

  • 1. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity.
    Chen Z; Yin JJ; Zhou YT; Zhang Y; Song L; Song M; Hu S; Gu N
    ACS Nano; 2012 May; 6(5):4001-12. PubMed ID: 22533614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production.
    Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM
    Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity.
    Voinov MA; Sosa Pagán JO; Morrison E; Smirnova TI; Smirnov AI
    J Am Chem Soc; 2011 Jan; 133(1):35-41. PubMed ID: 21141957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the toxic effects of iron oxide nanoparticles.
    Soenen SJ; De Cuyper M; De Smedt SC; Braeckmans K
    Methods Enzymol; 2012; 509():195-224. PubMed ID: 22568907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2.
    Wang H; Huang Y
    J Hazard Mater; 2011 Jul; 191(1-3):163-9. PubMed ID: 21570769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalase-peroxidase activity of iron(III)-TAML activators of hydrogen peroxide.
    Ghosh A; Mitchell DA; Chanda A; Ryabov AD; Popescu DL; Upham EC; Collins GJ; Collins TJ
    J Am Chem Soc; 2008 Nov; 130(45):15116-26. PubMed ID: 18928252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.
    Zeng L; Ren W; Zheng J; Cui P; Wu A
    Phys Chem Chem Phys; 2012 Feb; 14(8):2631-6. PubMed ID: 22273844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells.
    Hohnholt MC; Geppert M; Dringen R
    Acta Biomater; 2011 Nov; 7(11):3946-54. PubMed ID: 21763792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles.
    Prucek R; Tuček J; Kilianová M; Panáček A; Kvítek L; Filip J; Kolář M; Tománková K; Zbořil R
    Biomaterials; 2011 Jul; 32(21):4704-13. PubMed ID: 21507482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide anion radical generation in the NaOH/H(2)O(2)/Fe(III) system: a spin trapping ESR study.
    Zhou N; Qiu T; Yang-Ping L; Yang L
    Magn Reson Chem; 2006 Jan; 44(1):38-44. PubMed ID: 16302167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.
    Sun J; Wang S; Zhao D; Hun FH; Weng L; Liu H
    Cell Biol Toxicol; 2011 Oct; 27(5):333-42. PubMed ID: 21681618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.
    Su H; Liu DD; Zhao M; Hu WL; Xue SS; Cao Q; Le XY; Ji LN; Mao ZW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8233-42. PubMed ID: 25826467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses.
    Fenoglio I; Greco G; Livraghi S; Fubini B
    Chemistry; 2009; 15(18):4614-21. PubMed ID: 19291716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH.
    Dao YH; De Laat J
    Water Res; 2011 May; 45(11):3309-17. PubMed ID: 21514949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of biological buffer solutions on the peroxidase-like catalytic activity of Fe
    Raineri M; Winkler EL; Torres TE; Vasquez Mansilla M; Nadal MS; Zysler RD; Lima E
    Nanoscale; 2019 Oct; 11(39):18393-18406. PubMed ID: 31573583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation.
    Majewski AP; Schallon A; Jérôme V; Freitag R; Müller AH; Schmalz H
    Biomacromolecules; 2012 Mar; 13(3):857-66. PubMed ID: 22296556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation characteristics of humic acid over iron oxides/Fe 0 core-shell nanoparticles with UVA/H2O2.
    Nie Y; Hu C; Zhou L; Qu J; Wei Q; Wang D
    J Hazard Mater; 2010 Jan; 173(1-3):474-9. PubMed ID: 19762150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments.
    Szalay B; Tátrai E; Nyírő G; Vezér T; Dura G
    J Appl Toxicol; 2012 Jun; 32(6):446-53. PubMed ID: 22161551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of biocompatible, mesoporous Fe(3)O(4) nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications.
    Xuan S; Wang F; Lai JM; Sham KW; Wang YX; Lee SF; Yu JC; Cheng CH; Leung KC
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):237-44. PubMed ID: 21229966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.