These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 22533648)

  • 1. Embracing complexity: deciphering origins and transformations of atmospheric organics through speciated measurements.
    Worton DR; Gentner DR; Isaacman G; Goldstein AH
    Environ Sci Technol; 2012 May; 46(10):5265-6. PubMed ID: 22533648
    [No Abstract]   [Full Text] [Related]  

  • 2. Determination of stable carbon isotopes of organic acids and carbonaceous aerosols in the atmosphere.
    Fisseha R; Saurer M; Jäggi M; Szidat S; Siegwolf RT; Baltensperger U
    Rapid Commun Mass Spectrom; 2006; 20(15):2343-7. PubMed ID: 16921534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal desorption comprehensive two-dimensional gas chromatography for in-situ measurements of organic aerosols.
    Goldstein AH; Worton DR; Williams BJ; Hering SV; Kreisberg NM; Panić O; Górecki T
    J Chromatogr A; 2008 Apr; 1186(1-2):340-7. PubMed ID: 18001751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols.
    An Z; Ren H; Xue M; Guan X; Jiang J
    J Chromatogr A; 2020 Aug; 1625():461336. PubMed ID: 32709360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part I: Off-line mass spectrometry techniques.
    Pratt KA; Prather KA
    Mass Spectrom Rev; 2012; 31(1):1-16. PubMed ID: 21442634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass.
    Miracolo MA; Presto AA; Lambe AT; Hennigan CJ; Donahue NM; Kroll JH; Worsnop DR; Robinson AL
    Environ Sci Technol; 2010 Mar; 44(5):1638-43. PubMed ID: 20121083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.
    Schobesberger S; Junninen H; Bianchi F; Lönn G; Ehn M; Lehtipalo K; Dommen J; Ehrhart S; Ortega IK; Franchin A; Nieminen T; Riccobono F; Hutterli M; Duplissy J; Almeida J; Amorim A; Breitenlechner M; Downard AJ; Dunne EM; Flagan RC; Kajos M; Keskinen H; Kirkby J; Kupc A; Kürten A; Kurtén T; Laaksonen A; Mathot S; Onnela A; Praplan AP; Rondo L; Santos FD; Schallhart S; Schnitzhofer R; Sipilä M; Tomé A; Tsagkogeorgas G; Vehkamäki H; Wimmer D; Baltensperger U; Carslaw KS; Curtius J; Hansel A; Petäjä T; Kulmala M; Donahue NM; Worsnop DR
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17223-8. PubMed ID: 24101502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplification of the representation of the organic component of atmospheric particulates.
    McFiggans G; Alfarra MR; Allan J; Bower K; Coe H; Cubison M; Topping D; Williams P; Decesari S; Facchini C; Fuzzi S
    Faraday Discuss; 2005; 130():341-62; discussion 363-86, 519-24. PubMed ID: 16161793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis.
    Israël G; Szopa C; Raulin F; Cabane M; Niemann HB; Atreya SK; Bauer SJ; Brun JF; Chassefière E; Coll P; Condé E; Coscia D; Hauchecorne A; Millian P; Nguyen MJ; Owen T; Riedler W; Samuelson RE; Siguier JM; Steller M; Sternberg R; Vidal-Madjar C
    Nature; 2005 Dec; 438(7069):796-9. PubMed ID: 16319825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of organic sulfur compounds in atmospheric aerosols at the HKUST supersite in Hong Kong using HR-ToF-AMS.
    Huang DD; Li YJ; Lee BP; Chan CK
    Environ Sci Technol; 2015 Mar; 49(6):3672-9. PubMed ID: 25700022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols.
    González NJ; Borg-Karlson AK; Redeby JP; Nozière B; Krejci R; Pei Y; Dommen J; Prévôt AS
    J Chromatogr A; 2011 Dec; 1218(51):9288-94. PubMed ID: 22104215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol.
    Kroll JH; Smith JD; Che DL; Kessler SH; Worsnop DR; Wilson KR
    Phys Chem Chem Phys; 2009 Sep; 11(36):8005-14. PubMed ID: 19727507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a novel method for the organic chemical characterization of atmospheric aerosols based on microwave-assisted extraction combined with stir bar sorptive extraction.
    Alvarez-Avilés O; Cuadra-Rodríguez L; González-Illán F; Quiñones-González J; Rosario O
    Anal Chim Acta; 2007 Aug; 597(2):273-81. PubMed ID: 17683739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerosol mass spectrometric features of biogenic SOA: observations from a plant chamber and in rural atmospheric environments.
    Kiendler-Scharr A; Zhang Q; Hohaus T; Kleist E; Mensah A; Mentel TF; Spindler C; Uerlings R; Tillmann R; Wildt J
    Environ Sci Technol; 2009 Nov; 43(21):8166-72. PubMed ID: 19924939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.
    Kroll JH; Donahue NM; Jimenez JL; Kessler SH; Canagaratna MR; Wilson KR; Altieri KE; Mazzoleni LR; Wozniak AS; Bluhm H; Mysak ER; Smith JD; Kolb CE; Worsnop DR
    Nat Chem; 2011 Feb; 3(2):133-9. PubMed ID: 21258386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct analysis of highly oxidised organic aerosol constituents by on-line ion trap mass spectrometry in the negative-ion mode.
    Warscheid B; Hoffmann T
    Rapid Commun Mass Spectrom; 2002; 16(6):496-504. PubMed ID: 11870886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depression of ammonia uptake to sulfuric acid aerosols by competing uptake of ambient organic gases.
    Liggio J; Li SM; Vlasenko A; Stroud C; Makar P
    Environ Sci Technol; 2011 Apr; 45(7):2790-6. PubMed ID: 21405082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental applications of membrane introduction mass spectrometry.
    Ketola RA; Kotiaho T; Cisper ME; Allen TM
    J Mass Spectrom; 2002 May; 37(5):457-76. PubMed ID: 12112751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions.
    Navarro-González R; Iñiguez E; de la Rosa J; McKay CP
    Astrobiology; 2009 Oct; 9(8):703-15. PubMed ID: 19845443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Use of chromato-mass-spectrometry for detection of volatile organic compounds in environmental objects].
    Malysheva AG
    Gig Sanit; 1997; (4):33-7. PubMed ID: 9378321
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.