These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22533719)

  • 21. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.
    Song J; Huang P; Duan H; Chen X
    Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. "Clicked" plasmonic core-satellites: covalently assembled gold nanoparticles.
    Gandra N; Singamaneni S
    Chem Commun (Camb); 2012 Dec; 48(94):11540-2. PubMed ID: 23090071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.
    Tian Y; Shuai Z; Shen J; Zhang L; Chen S; Song C; Zhao B; Fan Q; Wang L
    Small; 2018 Jun; 14(24):e1800669. PubMed ID: 29736956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ordered Arrangement and Optical Properties of Silica-Stabilized Gold Nanoparticle-PNIPAM Core-Satellite Clusters for Sensitive Raman Detection.
    Herrmann JF; Kretschmer F; Hoeppener S; Höppener C; Schubert US
    Small; 2017 Oct; 13(39):. PubMed ID: 28834089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid.
    Sun J; Liu R; Tang J; Zhang Z; Zhou X; Liu J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16730-7. PubMed ID: 26167718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous Formation of Cold-Welded Plasmonic Nanoassemblies with Refracted Shapes for Intense Raman Scattering.
    Mariño-López A; Blanco-Formoso M; Furini LN; Sousa-Castillo A; Tiryaki E; Pérez-Lorenzo M; Testa-Anta M; Salgueiriño V; Kotov NA; Alvarez-Puebla RA; Correa-Duarte MA
    Langmuir; 2019 Mar; 35(11):4110-4116. PubMed ID: 30789741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering.
    Trinh HD; Kim S; Yun S; Huynh LTM; Yoon S
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1805-1814. PubMed ID: 38001021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.
    Höller RP; Dulle M; Thomä S; Mayer M; Steiner AM; Förster S; Fery A; Kuttner C; Chanana M
    ACS Nano; 2016 Jun; 10(6):5740-50. PubMed ID: 26982386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Core-satellite nanostructures and their biomedical applications.
    Gu Q; Zhu J; Weng GJ; Li JJ; Zhao JW
    Mikrochim Acta; 2022 Nov; 189(12):470. PubMed ID: 36435950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Core-Satellites Nanostructures with High Chirality and Bioproperty.
    Xu L; Hao C; Yin H; Liu L; Ma W; Wang L; Kuang H; Xu C
    J Phys Chem Lett; 2013 Jul; 4(14):2379-84. PubMed ID: 26704291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2014 Mar; 30(8):2249-58. PubMed ID: 24548062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes.
    Chung T; Koker T; Pinaud F
    Small; 2016 Nov; 12(42):5891-5901. PubMed ID: 27608276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable "Clicked-to-Assembled" Plasmonic Core-Satellite Nanostructures and Its Surface-Enhanced Fluorescence in Living Cells.
    Yang X; Li J; Deng L; Su D; Dong C; Ren J
    ACS Omega; 2019 Dec; 4(25):21161-21168. PubMed ID: 31867509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions.
    Weng Z; Wang H; Vongsvivut J; Li R; Glushenkov AM; He J; Chen Y; Barrow CJ; Yang W
    Anal Chim Acta; 2013 Nov; 803():128-34. PubMed ID: 24216206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Au-Protected Ag Core/Satellite Nanoassemblies for Excellent Extra-/Intracellular Surface-Enhanced Raman Scattering Activity.
    Zhang Z; Bando K; Taguchi A; Mochizuki K; Sato K; Yasuda H; Fujita K; Kawata S
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44027-44037. PubMed ID: 29171749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Sensitive Plasmonic Optical Sensors Based on Gold Core-Satellite Nanostructures Immobilized on Glass Substrates.
    Ode K; Honjo M; Takashima Y; Tsuruoka T; Akamatsu K
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20522-6. PubMed ID: 27482968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.