These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22533719)

  • 61. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray.
    Yang L; Lee JH; Rathnam C; Hou Y; Choi JW; Lee KB
    Nano Lett; 2019 Nov; 19(11):8138-8148. PubMed ID: 31663759
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy.
    Sun M; Xu L; Ma W; Wu X; Kuang H; Wang L; Xu C
    Adv Mater; 2016 Feb; 28(5):898-904. PubMed ID: 26635317
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Amphiphilic-Polymer-Guided Plasmonic Assemblies and Their Biomedical Applications.
    Song J; Niu G; Chen X
    Bioconjug Chem; 2017 Jan; 28(1):105-114. PubMed ID: 28095685
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Manipulating the confinement of electromagnetic field in size-specific gold nanoparticles dimers and trimers.
    Pal SK; Chatterjee H; Ghosh SK
    RSC Adv; 2019 Dec; 9(72):42145-42154. PubMed ID: 35542872
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing.
    Zhao F; Zeng J; Shih WC
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28657586
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond.
    Li Y; Deng Z
    Acc Chem Res; 2019 Dec; 52(12):3442-3454. PubMed ID: 31742388
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity.
    Schütz M; Schlücker S
    Phys Chem Chem Phys; 2015 Oct; 17(37):24356-60. PubMed ID: 26329892
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review.
    Nguyen TT; Mammeri F; Ammar S
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29518969
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Generalised coupled-dipole model for core-satellite nanostructures.
    Glukhova S; Le Ru EC; Auguié B
    Nanoscale; 2023 Dec; 15(48):19767-19776. PubMed ID: 38050431
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy.
    Kühler P; Roller EM; Schreiber R; Liedl T; Lohmüller T; Feldmann J
    Nano Lett; 2014 May; 14(5):2914-9. PubMed ID: 24754830
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Turning on hotspots: supracolloidal SERS probes made brilliant by an external activation mechanism.
    Jancke S; Liu C; Wang R; Sarkar S; Besford QA; König TAF; Popp J; Cialla-May D; Rossner C
    Nanoscale; 2023 Nov; 15(46):18687-18695. PubMed ID: 37941432
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Planet-Satellite Micellar Superstructures Formed by ABCB Terpolymers in Solution.
    Duan C; Li W; Qiu F; Shi AC
    ACS Macro Lett; 2017 Mar; 6(3):257-261. PubMed ID: 35650923
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural and optical properties of self-assembled chains of plasmonic nanocubes.
    Klinkova A; Thérien-Aubin H; Ahmed A; Nykypanchuk D; Choueiri RM; Gagnon B; Muntyanu A; Gang O; Walker GC; Kumacheva E
    Nano Lett; 2014 Nov; 14(11):6314-21. PubMed ID: 25275879
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced Raman scattering.
    Jaiswal A; Tian L; Tadepalli S; Liu KK; Fei M; Farrell ME; Pellegrino PM; Singamaneni S
    Small; 2014 Nov; 10(21):4287-92. PubMed ID: 25045064
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modular Assembly of Plasmonic Nanoparticles Assisted by DNA Origami.
    Zhu C; Wang M; Dong J; Zhou C; Wang Q
    Langmuir; 2018 Dec; 34(49):14963-14968. PubMed ID: 30001143
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Strongly coupled nanorod vertical arrays for plasmonic sensing.
    Wei W; Chen K; Ge G
    Adv Mater; 2013 Jul; 25(28):3863-8. PubMed ID: 24048972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.