These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22533797)

  • 21. Response of the seated human body to whole-body vertical vibration: discomfort caused by mechanical shocks.
    Zhou Z; Griffin MJ
    Ergonomics; 2017 Mar; 60(3):347-357. PubMed ID: 27006084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: Effect of backrest height.
    Beard GF; Griffin MJ
    Appl Ergon; 2016 May; 54():51-61. PubMed ID: 26851464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does a reclined backrest with less legroom meet the same comfort as a fixed backrest with 80 mm more leg room?
    Eversdijk SM; de Vos FJC; van Zee AAT; Houtepen NCA; van Haaff MI; Iserief MAC; Vink P
    Work; 2024 Jun; ():. PubMed ID: 38943420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of seat back inclination on spine height changes.
    Magnusson M; Hansson T; Pope MH
    Appl Ergon; 1994 Oct; 25(5):294-8. PubMed ID: 15676980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.
    Qiu Y; Griffin MJ
    Ind Health; 2012; 50(1):37-51. PubMed ID: 22146145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency-dependence of discomfort caused by vibration and mechanical shocks.
    Patelli G; Morioka M; Griffin MJ
    Ergonomics; 2018 Aug; 61(8):1102-1115. PubMed ID: 29338638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transmission of translational seat vibration to the head--I. Vertical seat vibration.
    Paddan GS; Griffin MJ
    J Biomech; 1988; 21(3):191-7. PubMed ID: 3379079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equivalent magnitude-dependent discomfort under vertical vibration up to 100 Hz.
    Lin J; Li M; Lin Z; Wang J; Meng X; Zhang J
    Ergonomics; 2023 Oct; 66(10):1415-1423. PubMed ID: 36420783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy absorption of seated occupants exposed to horizontal vibration and role of back support condition.
    Rakheja S; Mandapuram S; Dong RG
    Ind Health; 2008 Dec; 46(6):550-66. PubMed ID: 19088407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The transmission of translational seat vibration to the head--II. Horizontal seat vibration.
    Paddan GS; Griffin MJ
    J Biomech; 1988; 21(3):199-206. PubMed ID: 3379080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-body vibration exposure in unfavourable seated postures: apparent mass and seat-to-head transmissibility measurements in the fore-and-aft, lateral, and vertical directions.
    Amari M; Perrin N
    Ergonomics; 2023 Jan; 66(1):136-151. PubMed ID: 35543592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of vertical vibration on sitting comfort in civil aviation during the cruising flight.
    Huang Y; Li J
    Ergonomics; 2023 Apr; 66(4):524-535. PubMed ID: 35786414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration.
    Liu C; Qiu Y; Griffin MJ
    Ergonomics; 2015; 58(7):1207-19. PubMed ID: 25716324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of the frequency-weighting curve for accelerations measured on the seat and at the surface supporting the feet during horizontal whole-body vibrations in x- and y-directions.
    Schust M; Kreisel A; Seidel H; Blüthner R
    Ind Health; 2010; 48(5):725-42. PubMed ID: 20953088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic response of seated male volunteers in various reclined postures on a sled subjected to a braking pulse.
    González-García M; Siebler L; Muehlbauer J; Schick S; Peldschus S; Weber J
    Accid Anal Prev; 2023 Dec; 193():107293. PubMed ID: 37738846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration.
    Dewangan KN; Rakheja S; Marcotte P; Shahmir A
    Ergonomics; 2015; 58(7):1175-90. PubMed ID: 26062686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodynamic response of seated human body to vertical and added lateral and roll vibrations.
    Wu J; Qiu Y; Zhou H
    Ergonomics; 2022 Apr; 65(4):546-560. PubMed ID: 34503399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transmission of translational seat vibration to the head: the effect of measurement position at the head.
    Paddan GS; Griffin MJ
    Proc Inst Mech Eng H; 1992; 206(3):159-68. PubMed ID: 1482511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apparent mass of the seated human body during vertical vibration in the frequency range 2-100 Hz.
    Huang Y; Zhang P; Liang S
    Ergonomics; 2020 Sep; 63(9):1150-1163. PubMed ID: 32401623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design criteria for the reduction of shear forces in beds and seats.
    Goossens RH; Snijders CJ
    J Biomech; 1995 Feb; 28(2):225-30. PubMed ID: 7896865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.