These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 22534144)

  • 1. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain.
    Rahman MA; Hasegawa H; Lim RP
    Environ Res; 2012 Jul; 116():118-35. PubMed ID: 22534144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain.
    Caumette G; Koch I; Reimer KJ
    J Environ Monit; 2012 Nov; 14(11):2841-53. PubMed ID: 23014956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Scientometric Analysis of Recent Literature on Arsenic Bioaccumulation and Biotransformation in Marine Ecosystems.
    Li C; Zhong H; Zhang W
    Bull Environ Contam Toxicol; 2020 May; 104(5):551-558. PubMed ID: 32285138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration.
    DeForest DK; Brix KV; Adams WJ
    Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of stable isotopes to the bioaccumulation and trophic transfer of arsenic in aquatic organisms around a closed realgar mine.
    Yang F; Yu Z; Xie S; Feng H; Wei C; Zhang H; Zhang J
    Sci Total Environ; 2020 Jul; 726():138550. PubMed ID: 32304946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic bioaccumulation and biotransformation in aquatic organisms.
    Zhang W; Miao AJ; Wang NX; Li C; Sha J; Jia J; Alessi DS; Yan B; Ok YS
    Environ Int; 2022 May; 163():107221. PubMed ID: 35378441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.
    Sun R; Luo X; Tang B; Chen L; Liu Y; Mai B
    Environ Pollut; 2017 Mar; 222():165-174. PubMed ID: 28040337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic speciation in low-trophic marine food chain - An arsenic exposure study on microalgae (Diacronema lutheri) and blue mussels (Mytilus edulis L.).
    Tibon J; Gomez-Delgado AI; Agüera A; Strohmeier T; Silva MS; Lundebye AK; Larsen MM; Sloth JJ; Amlund H; Sele V
    Environ Pollut; 2023 Oct; 334():122176. PubMed ID: 37437757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity mechanisms of arsenic compounds in aquatic organisms.
    Byeon E; Kang HM; Yoon C; Lee JS
    Aquat Toxicol; 2021 Aug; 237():105901. PubMed ID: 34198209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated environmental factor-dependent growth and arsenic biotransformation by aquatic microalgae: A review.
    Papry RI; Miah S; Hasegawa H
    Chemosphere; 2022 Sep; 303(Pt 3):135164. PubMed ID: 35654229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study.
    Culioli JL; Fouquoire A; Calendini S; Mori C; Orsini A
    Aquat Toxicol; 2009 Oct; 94(4):286-93. PubMed ID: 19695721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of perfluorinated compounds in aquatic biota: an updated review.
    Houde M; De Silva AO; Muir DC; Letcher RJ
    Environ Sci Technol; 2011 Oct; 45(19):7962-73. PubMed ID: 21542574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model description of trophodynamic behavior of methylmercury in a marine aquatic system.
    Tong Y; Zhang W; Hu X; Ou L; Hu D; Yang T; Wei W; Wang X
    Environ Pollut; 2012 Jul; 166():89-97. PubMed ID: 22481181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccumulation and trophic transfer of dioxins in marine copepods and fish.
    Zhang Q; Yang L; Wang WX
    Environ Pollut; 2011 Dec; 159(12):3390-7. PubMed ID: 21906859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trophodynamics and distribution of silver in a Patagonia mountain lake.
    Revenga JE; Campbell LM; Kyser K; Klassen K; Arribére MA; Ribeiro Guevara S
    Chemosphere; 2011 Apr; 83(3):265-70. PubMed ID: 21216430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions.
    Juncos R; Arcagni M; Rizzo A; Campbell L; Arribére M; Guevara SR
    Chemosphere; 2016 Feb; 144():2277-89. PubMed ID: 26598997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of trinitrotoluene (TNT) in aquatic organisms: part 2--Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus).
    Belden JB; Ownby DR; Lotufo GR; Lydy MJ
    Chemosphere; 2005 Mar; 58(9):1161-8. PubMed ID: 15667837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.
    Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP
    Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of biotransformation on trophic transfer of the PAH, fluoranthene.
    Palmqvist A; Rasmussen LJ; Forbes VE
    Aquat Toxicol; 2006 Dec; 80(3):309-19. PubMed ID: 17084915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.