These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22534163)

  • 1. Accumulation and rapid decay of non-LTR retrotransposons in the genome of the three-spine stickleback.
    Blass E; Bell M; Boissinot S
    Genome Biol Evol; 2012; 4(5):687-702. PubMed ID: 22534163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lizards and LINEs: selection and demography affect the fate of L1 retrotransposons in the genome of the green anole (Anolis carolinensis).
    Tollis M; Boissinot S
    Genome Biol Evol; 2013; 5(9):1754-68. PubMed ID: 24013105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals.
    Novick PA; Basta H; Floumanhaft M; McClure MA; Boissinot S
    Mol Biol Evol; 2009 Aug; 26(8):1811-22. PubMed ID: 19420048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes.
    Volff JN; Körting C; Schartl M
    Mol Biol Evol; 2000 Nov; 17(11):1673-84. PubMed ID: 11070055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics.
    Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É
    BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex.
    Bardil A; Tayalé A; Parisod C
    Plant J; 2015 May; 82(4):621-31. PubMed ID: 25823965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources.
    Choudhury RR; Neuhaus JM; Parisod C
    Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A co-opted gypsy-type LTR-retrotransposon is conserved in the genomes of humans, sheep, mice, and rats.
    Lynch C; Tristem M
    Curr Biol; 2003 Sep; 13(17):1518-23. PubMed ID: 12956954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teleost fish genomes contain a diverse array of L1 retrotransposon lineages that exhibit a low copy number and high rate of turnover.
    Duvernell DD; Pryor SR; Adams SM
    J Mol Evol; 2004 Sep; 59(3):298-308. PubMed ID: 15553085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of SR3 reveals abundance of non-LTR retrotransposons of the RTE clade in the genome of the human blood fluke, Schistosoma mansoni.
    Laha T; Kewgrai N; Loukas A; Brindley PJ
    BMC Genomics; 2005 Nov; 6():154. PubMed ID: 16271150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species.
    Yang LL; Zhang XY; Wang LY; Li YG; Li XT; Yang Y; Su Q; Chen N; Zhang YL; Li N; Deng CL; Li SF; Gao WJ
    BMC Genomics; 2023 Jul; 24(1):423. PubMed ID: 37501164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns.
    Domingues DS; Cruz GM; Metcalfe CJ; Nogueira FT; Vicentini R; Alves Cde S; Van Sluys MA
    BMC Genomics; 2012 Apr; 13():137. PubMed ID: 22507400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Getting closer to a pre-vertebrate genome: the non-LTR retrotransposons of Branchiostoma floridae.
    Permanyer J; Albalat R; Gonzàlez-Duarte R
    Int J Biol Sci; 2006; 2(2):48-53. PubMed ID: 16733533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity.
    Biedler J; Tu Z
    Mol Biol Evol; 2003 Nov; 20(11):1811-25. PubMed ID: 12832632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-LTR retrotransposons in fungi.
    Novikova O; Fet V; Blinov A
    Funct Integr Genomics; 2009 Feb; 9(1):27-42. PubMed ID: 18677522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The landscape and structural diversity of LTR retrotransposons in Musa genome.
    Nouroz F; Noreen S; Ahmad H; Heslop-Harrison JSP
    Mol Genet Genomics; 2017 Oct; 292(5):1051-1067. PubMed ID: 28601922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
    Tian Z; Rizzon C; Du J; Zhu L; Bennetzen JL; Jackson SA; Gaut BS; Ma J
    Genome Res; 2009 Dec; 19(12):2221-30. PubMed ID: 19789376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the mdg1 lineage of the Ty3/gypsy group of LTR retrotransposons in Anopheles gambiae.
    Tubío JM; Costas JC; Naveira HF
    Gene; 2004 Apr; 330():123-31. PubMed ID: 15087131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes.
    Permanyer J; Gonzàlez-Duarte R; Albalat R
    Genome Biol; 2003; 4(11):R73. PubMed ID: 14611659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.