These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22534201)

  • 1. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering.
    Stloukal P; Verney V; Commereuc S; Rychly J; Matisova-Rychlá L; Pis V; Koutny M
    Chemosphere; 2012 Aug; 88(10):1214-9. PubMed ID: 22534201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions.
    Kijchavengkul T; Auras R; Rubino M; Ngouajio M; Fernandez RT
    Chemosphere; 2008 Apr; 71(9):1607-16. PubMed ID: 18353427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated Biodegradation of Agriculture Film Based on Aromatic-Aliphatic Copolyester in Soil under Mesophilic Conditions.
    Šerá J; Stloukal P; Jančová P; Verney V; Pekařová S; Koutný M
    J Agric Food Chem; 2016 Jul; 64(28):5653-61. PubMed ID: 27367168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms.
    Abou-Zeid DM; Müller RJ; Deckwer WD
    Biomacromolecules; 2004; 5(5):1687-97. PubMed ID: 15360276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polylactic acid and polylactic acid-based nanocomposite photooxidation.
    Bocchini S; Fukushima K; Blasio AD; Fina A; Frache A; Geobaldo F
    Biomacromolecules; 2010 Nov; 11(11):2919-26. PubMed ID: 20942482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic and enzymatic degradation of liquid-crystalline aromatic/aliphatic copolyesters.
    Chen Y; Jia Z; Schaper A; Kristiansen M; Smith P; Wombacher R; Wendorff JH; Greiner A
    Biomacromolecules; 2004; 5(1):11-6. PubMed ID: 14715002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of polyesters containing aromatic constituents.
    Müller RJ; Kleeberg I; Deckwer WD
    J Biotechnol; 2001 Mar; 86(2):87-95. PubMed ID: 11245897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of microbial and synthetic polyesters by fungi.
    Kim DY; Rhee YH
    Appl Microbiol Biotechnol; 2003 May; 61(4):300-8. PubMed ID: 12743758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aliphatic polyesters: great degradable polymers that cannot do everything.
    Vert M
    Biomacromolecules; 2005; 6(2):538-46. PubMed ID: 15762610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, and properties of new biodegradable aromatic/aliphatic liquid crystalline copolyesters.
    Chen Y; Wombacher R; Wendorff JH; Visjager J; Smith P; Greiner A
    Biomacromolecules; 2003; 4(4):974-80. PubMed ID: 12857081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications.
    Seppälä J; Korhonen H; Hakala R; Malin M
    Macromol Biosci; 2011 Dec; 11(12):1647-52. PubMed ID: 22052651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates.
    Witt U; Einig T; Yamamoto M; Kleeberg I; Deckwer WD; Müller RJ
    Chemosphere; 2001 Jul; 44(2):289-99. PubMed ID: 11444312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.
    de Oca HM; Wilson JE; Penrose A; Langton DM; Dagger AC; Anderson M; Farrar DF; Lovell CS; Ries ME; Ward IM; Wilson AD; Cowling SJ; Saez IM; Goodby JW
    Biomaterials; 2010 Oct; 31(30):7599-605. PubMed ID: 20655107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnological production of (R)-3-hydroxybutyric acid monomer.
    Tokiwa Y; Ugwu CU
    J Biotechnol; 2007 Nov; 132(3):264-72. PubMed ID: 17543411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable aliphatic polyester ionomers.
    Han SI; Yoo Y; Kim DK; Im SS
    Macromol Biosci; 2004 Mar; 4(3):200-7. PubMed ID: 15468209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology.
    Lenz RW; Marchessault RH
    Biomacromolecules; 2005; 6(1):1-8. PubMed ID: 15638495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inclusion complex formation between alpha-cyclodextrin and biodegradable aliphatic polyesters.
    Shin KM; Dong T; He Y; Taguchi Y; Oishi A; Nishida H; Inoue Y
    Macromol Biosci; 2004 Dec; 4(12):1075-83. PubMed ID: 15586392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of aliphatic and aromatic polycarbonates.
    Artham T; Doble M
    Macromol Biosci; 2008 Jan; 8(1):14-24. PubMed ID: 17849431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The biodegradation of poly-beta-hydroxybutyrate (PHB) by a model soil community: the effect of cultivation conditions on the degradation rate and the physicochemical characteristics of PHB].
    Bonartseva GA; Myshkina VL; Nikolaeva DA; Rebrov AV; Gerasin VA; Makhina TK
    Mikrobiologiia; 2002; 71(2):258-63. PubMed ID: 12024829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.