These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22534363)

  • 1. Bioreceptivity of building stones: a review.
    Miller AZ; Sanmartín P; Pereira-Pardo L; Dionísio A; Saiz-Jimenez C; Macedo MF; Prieto B
    Sci Total Environ; 2012 Jun; 426():1-12. PubMed ID: 22534363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting and reanalysing the concept of bioreceptivity 25 years on.
    Sanmartín P; Miller AZ; Prieto B; Viles HA
    Sci Total Environ; 2021 May; 770():145314. PubMed ID: 33736404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.
    Manso S; De Muynck W; Segura I; Aguado A; Steppe K; Boon N; De Belie N
    Sci Total Environ; 2014 May; 481():232-41. PubMed ID: 24602907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms.
    Vázquez-Nion D; Silva B; Prieto B
    Sci Total Environ; 2018 Jan; 610-611():44-54. PubMed ID: 28802109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal 'greening' and the conservation of stone heritage structures.
    Cutler NA; Viles HA; Ahmad S; McCabe S; Smith BJ
    Sci Total Environ; 2013 Jan; 442():152-64. PubMed ID: 23178775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioreceptivity index for granitic rocks used as construction material.
    Vázquez-Nion D; Silva B; Prieto B
    Sci Total Environ; 2018 Aug; 633():112-121. PubMed ID: 29573678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated approach for assessing the bioreceptivity of glazed tiles to phototrophic microorganisms.
    Coutinho ML; Miller AZ; Rogerio-Candelera MA; Mirão J; Cerqueira Alves L; Veiga JP; Águas H; Pereira S; Lyubchyk A; Macedo MF
    Biofouling; 2016; 32(3):243-59. PubMed ID: 26900634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where will large amounts of materials accumulated within the economy go?--A material flow analysis of construction minerals for Japan.
    Hashimoto S; Tanikawa H; Moriguchi Y
    Waste Manag; 2007; 27(12):1725-38. PubMed ID: 17182239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodeterioration of stone monuments: Studies on the influence of bioreceptivity on cyanobacterial biofilm growth and on the biocidal efficacy of essential oils in natural hydrogel.
    Gabriele F; Ranaldi R; Bruno L; Casieri C; Rugnini L; Spreti N
    Sci Total Environ; 2023 Apr; 870():161901. PubMed ID: 36736398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions.
    Manso S; Calvo-Torras MÁ; De Belie N; Segura I; Aguado A
    Sci Total Environ; 2015 Apr; 512-513():444-453. PubMed ID: 25644840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applied microbiology and biotechnology in the conservation of stone cultural heritage materials.
    Fernandes P
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):291-6. PubMed ID: 17043826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and molecular characterisation of fungal populations possibly involved in the biological alteration of stones in historical buildings.
    Scrano L; Boccone LF; Bufo SA; Carrieri R; Lahoz E; Crescenzi A
    Commun Agric Appl Biol Sci; 2012; 77(3):187-95. PubMed ID: 23878973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris.
    Ferrándiz-Mas V; Bond T; Zhang Z; Melchiorri J; Cheeseman CR
    Sci Total Environ; 2016 Sep; 563-564():71-80. PubMed ID: 27135568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework of analysis for field experiments with alternative materials in road construction.
    François D; Jullien A
    Waste Manag; 2009 Jan; 29(1):374-82. PubMed ID: 18571916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Framework for estimating potential wastes and secondary resources accumulated within an economy--a case study of construction minerals in Japan.
    Hashimoto S; Tanikawa H; Moriguchi Y
    Waste Manag; 2009 Nov; 29(11):2859-66. PubMed ID: 19608398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioremediation of weathered-building stone surfaces.
    Webster A; May E
    Trends Biotechnol; 2006 Jun; 24(6):255-60. PubMed ID: 16647149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the nature, role and control of lithobionts on stone cultural heritage: weighing-up and managing biodeterioration and bioprotection.
    Favero-Longo SE; Viles HA
    World J Microbiol Biotechnol; 2020 Jul; 36(7):100. PubMed ID: 32607867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity.
    Vázquez-Nion D; Silva B; Troiano F; Prieto B
    Biofouling; 2017 Jan; 33(1):24-35. PubMed ID: 27911078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses.
    Negi A; Sarethy IP
    Microb Ecol; 2019 Nov; 78(4):1014-1029. PubMed ID: 31025063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone.
    Pinna D; Salvadori B; Galeotti M
    Sci Total Environ; 2012 Apr; 423():132-41. PubMed ID: 22401787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.