BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22534369)

  • 1. Application of conductive polymers in biocathode of microbial fuel cells and microbial community.
    Li C; Ding L; Cui H; Zhang L; Xu K; Ren H
    Bioresour Technol; 2012 Jul; 116():459-65. PubMed ID: 22534369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis.
    Li C; Zhang L; Ding L; Ren H; Cui H
    Biosens Bioelectron; 2011 Jun; 26(10):4169-76. PubMed ID: 21549585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell.
    Zhang G; Zhao Q; Jiao Y; Wang K; Lee DJ; Ren N
    Water Res; 2012 Jan; 46(1):43-52. PubMed ID: 22078254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocathode microbial fuel cell for efficient electricity recovery from dairy manure.
    Zhang G; Zhao Q; Jiao Y; Wang K; Lee DJ; Ren N
    Biosens Bioelectron; 2012 Jan; 31(1):537-43. PubMed ID: 22169813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells.
    Yu YY; Chen HL; Yong YC; Kim DH; Song H
    Chem Commun (Camb); 2011 Dec; 47(48):12825-7. PubMed ID: 22048750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells.
    De Schamphelaire L; Boeckx P; Verstraete W
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1675-87. PubMed ID: 20467736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells.
    Wang Z; Zheng Y; Xiao Y; Wu S; Wu Y; Yang Z; Zhao F
    Bioresour Technol; 2013 Sep; 144():74-9. PubMed ID: 23859984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction.
    Xing D; Cheng S; Logan BE; Regan JM
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1575-87. PubMed ID: 19779712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biohydrogen fuel cell using a conductive polymer nanocomposite based anode.
    Hoa le Q; Sugano Y; Yoshikawa H; Saito M; Tamiya E
    Biosens Bioelectron; 2010 Jul; 25(11):2509-14. PubMed ID: 20472419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells.
    Ter Heijne A; Strik DP; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Sep; 44(18):7151-6. PubMed ID: 20715764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic microbial fuel cells with positive light response.
    Zou Y; Pisciotta J; Billmyre RB; Baskakov IV
    Biotechnol Bioeng; 2009 Dec; 104(5):939-46. PubMed ID: 19575441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insight into cathode options for microbial fuel cells.
    Lefebvre O; Al-Mamun A; Ooi WK; Tang Z; Chua DH; Ng HY
    Water Sci Technol; 2008; 57(12):2031-7. PubMed ID: 18587194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells.
    Zhang G; Wang K; Zhao Q; Jiao Y; Lee DJ
    Bioresour Technol; 2012 Aug; 118():249-56. PubMed ID: 22705531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.
    Huang L; Regan JM; Quan X
    Bioresour Technol; 2011 Jan; 102(1):316-23. PubMed ID: 20634062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power overshoot in two-chambered microbial fuel cell (MFC).
    Nien PC; Lee CY; Ho KC; Adav SS; Liu L; Wang A; Ren N; Lee DJ
    Bioresour Technol; 2011 Apr; 102(7):4742-6. PubMed ID: 21295969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell.
    Aldrovandi A; Marsili E; Stante L; Paganin P; Tabacchioni S; Giordano A
    Bioresour Technol; 2009 Jul; 100(13):3252-60. PubMed ID: 19303285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison analysis on simultaneous decolorization of Congo red and electricity generation in microbial fuel cell (MFC) with L-threonine-/conductive polymer-modified anodes.
    Li C; Luo M; Zhou S; He H; Cao J; Luo J
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4262-4275. PubMed ID: 32935215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyaniline/β-MnO
    Zhou X; Xu Y; Mei X; Du N; Jv R; Hu Z; Chen S
    Chemosphere; 2018 May; 198():482-491. PubMed ID: 29427950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X; Tokash JC; Zhang F; Liang P; Huang X; Logan BE
    Environ Sci Technol; 2013 Feb; 47(4):2085-91. PubMed ID: 23360098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.