These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 22534400)
21. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest. Wang X; Lin P; Ho JWK BMC Genomics; 2018 Jan; 19(Suppl 1):929. PubMed ID: 29363433 [TBL] [Abstract][Full Text] [Related]
22. Similarity regression predicts evolution of transcription factor sequence specificity. Lambert SA; Yang AWH; Sasse A; Cowley G; Albu M; Caddick MX; Morris QD; Weirauch MT; Hughes TR Nat Genet; 2019 Jun; 51(6):981-989. PubMed ID: 31133749 [TBL] [Abstract][Full Text] [Related]
24. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060 [TBL] [Abstract][Full Text] [Related]
25. A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Heyndrickx KS; Van de Velde J; Wang C; Weigel D; Vandepoele K Plant Cell; 2014 Oct; 26(10):3894-910. PubMed ID: 25361952 [TBL] [Abstract][Full Text] [Related]
26. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Schulz KN; Bondra ER; Moshe A; Villalta JE; Lieb JD; Kaplan T; McKay DJ; Harrison MM Genome Res; 2015 Nov; 25(11):1715-26. PubMed ID: 26335634 [TBL] [Abstract][Full Text] [Related]
27. The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Kudron MM; Victorsen A; Gevirtzman L; Hillier LW; Fisher WW; Vafeados D; Kirkey M; Hammonds AS; Gersch J; Ammouri H; Wall ML; Moran J; Steffen D; Szynkarek M; Seabrook-Sturgis S; Jameel N; Kadaba M; Patton J; Terrell R; Corson M; Durham TJ; Park S; Samanta S; Han M; Xu J; Yan KK; Celniker SE; White KP; Ma L; Gerstein M; Reinke V; Waterston RH Genetics; 2018 Mar; 208(3):937-949. PubMed ID: 29284660 [TBL] [Abstract][Full Text] [Related]
28. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment. Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817 [TBL] [Abstract][Full Text] [Related]
29. Thousands of cis-regulatory sequence combinations are shared by Arabidopsis and poplar. Ding J; Hu H; Li X Plant Physiol; 2012 Jan; 158(1):145-55. PubMed ID: 22058225 [TBL] [Abstract][Full Text] [Related]
30. Synthetic and genomic regulatory elements reveal aspects of King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA Elife; 2020 Feb; 9():. PubMed ID: 32043966 [TBL] [Abstract][Full Text] [Related]
31. Genome-wide discovery of active regulatory elements and transcription factor footprints in Ho MCW; Quintero-Cadena P; Sternberg PW Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739 [TBL] [Abstract][Full Text] [Related]
32. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Schultheis H; Bentsen M; Heger V; Looso M Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130 [TBL] [Abstract][Full Text] [Related]
33. Evolution of transcription factor binding through sequence variations and turnover of binding sites. Krieger G; Lupo O; Wittkopp P; Barkai N Genome Res; 2022 Jun; 32(6):1099-1111. PubMed ID: 35618416 [TBL] [Abstract][Full Text] [Related]
34. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces. Sebastian A; Contreras-Moreira B Bioinformatics; 2014 Jan; 30(2):258-65. PubMed ID: 24234003 [TBL] [Abstract][Full Text] [Related]
38. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets. Niu M; Tabari ES; Su Z BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502 [TBL] [Abstract][Full Text] [Related]
39. Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds. Mariani L; Weinand K; Vedenko A; Barrera LA; Bulyk ML Cell Syst; 2017 Sep; 5(3):187-201.e7. PubMed ID: 28957653 [TBL] [Abstract][Full Text] [Related]
40. A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Charos AE; Reed BD; Raha D; Szekely AM; Weissman SM; Snyder M Genome Res; 2012 Sep; 22(9):1668-79. PubMed ID: 22955979 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]