These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22534728)

  • 1. Finite element analysis of the ovine hip: development, results and comparison with the human hip.
    Mazoochian F; Hölzer A; Jalali J; Schmidutz F; Schröder C; Woiczinski M; Maierl J; Augat P; Jansson V
    Vet Comp Orthop Traumatol; 2012; 25(4):301-6. PubMed ID: 22534728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects.
    Sánchez Egea AJ; Valera M; Parraga Quiroga JM; Proubasta I; Noailly J; Lacroix D
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):444-50. PubMed ID: 24530154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of finite element predictions of cartilage contact pressure in the human hip joint.
    Anderson AE; Ellis BJ; Maas SA; Peters CL; Weiss JA
    J Biomech Eng; 2008 Oct; 130(5):051008. PubMed ID: 19045515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the lateral rotators on load transfer in the human hip joint revealed by mechanical analysis.
    Weißgraeber P; V D Wall H; Khabbazeh S; Kroker AM; Becker W
    Ann Anat; 2012 Sep; 194(5):461-6. PubMed ID: 22694841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel modelling and simulation method of hip joint surface contact stress.
    Wang M; Wang L; Li P; Fu Y
    Bioengineered; 2017 Jan; 8(1):105-112. PubMed ID: 27696938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element prediction of cartilage contact stresses in normal human hips.
    Harris MD; Anderson AE; Henak CR; Ellis BJ; Peters CL; Weiss JA
    J Orthop Res; 2012 Jul; 30(7):1133-9. PubMed ID: 22213112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulations of the 3D virtual model of the human hip joint, using finite element method.
    Grecu D; Pucalev I; Negru M; Tarniţă DN; Ionovici N; Diţă R
    Rom J Morphol Embryol; 2010; 51(1):151-5. PubMed ID: 20191136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact finite element stress analysis of the hip joint.
    Rapperport DJ; Carter DR; Schurman DJ
    J Orthop Res; 1985; 3(4):435-46. PubMed ID: 4067702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The shape of acetabular cartilage optimizes hip contact stress distribution.
    Daniel M; Iglic A; Kralj-Iglic V
    J Anat; 2005 Jul; 207(1):85-91. PubMed ID: 16011547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of cartilage contact pressure and loading in the hip joint during split posture.
    Assassi L; Magnenat-Thalmann N
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):745-56. PubMed ID: 26450106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis of sliding distance and contact mechanics of hip implant under dynamic walking conditions.
    Gao Y; Jin Z; Wang L; Wang M
    Proc Inst Mech Eng H; 2015 Jun; 229(6):469-74. PubMed ID: 25963387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study.
    Hua X; Li J; Wilcox RK; Fisher J; Jones AC
    Proc Inst Mech Eng H; 2015 Aug; 229(8):570-80. PubMed ID: 26112348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal hip joint contact pressure distribution in single-leg standing--effect of gender and anatomic parameters.
    Genda E; Iwasaki N; Li G; MacWilliams BA; Barrance PJ; Chao EY
    J Biomech; 2001 Jul; 34(7):895-905. PubMed ID: 11410173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of femur/acetabulum cartilage in the biomechanics of the intact hip: experimental and numerical assessment.
    Duarte RJ; Ramos A; Completo A; Relvas C; Simões JA
    Comput Methods Biomech Biomed Engin; 2015; 18(8):880-9. PubMed ID: 24261321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint.
    von Eisenhart R; Adam C; Steinlechner M; Müller-Gerbl M; Eckstein F
    J Orthop Res; 1999 Jul; 17(4):532-9. PubMed ID: 10459759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hip joint degeneration due to cam impingement: a finite element analysis.
    Hellwig FL; Tong J; Hussell JG
    Comput Methods Biomech Biomed Engin; 2016; 19(1):41-8. PubMed ID: 25567413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of "gait-musculoskeletal system-finite element".
    Xiong B; Yang P; Lin T; Xu J; Xie Y; Guo Y; Liu C; Zhou Q; Lai Q; He W; Wei Q; Zhang Q
    J Orthop Surg Res; 2022 May; 17(1):267. PubMed ID: 35568957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.
    Anderson AE; Ellis BJ; Maas SA; Weiss JA
    J Biomech; 2010 May; 43(7):1351-7. PubMed ID: 20176359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.