BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22534741)

  • 1. Ablation efficiency and relative thermal confinement measurements using wavelengths 1,064, 1,320, and 1,444 nm for laser-assisted lipolysis.
    Youn JI; Holcomb JD
    Lasers Med Sci; 2013 Feb; 28(2):519-27. PubMed ID: 22534741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of laser tunnels in laser-assisted lipolysis.
    Seckel BR; Doherty ST; Childs JJ; Smirnov MZ; Cohen RH; Altshuler GB
    Lasers Surg Med; 2009 Dec; 41(10):728-37. PubMed ID: 20014256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and numerical assessment of hyperthermic laser lipolysis with 1,064 nm Nd:YAG laser on a porcine fatty tissue model.
    Milanic M; Muc BT; Jezersek M; Lukac M
    Lasers Surg Med; 2018 Feb; 50(2):125-136. PubMed ID: 28940535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modeling of laser lipolysis.
    Mordon SR; Wassmer B; Reynaud JP; Zemmouri J
    Biomed Eng Online; 2008 Feb; 7():10. PubMed ID: 18312643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histologic evaluation of interstitial lipolysis comparing a 1064, 1320 and 2100 nm laser in an ex vivo model.
    Khoury JG; Saluja R; Keel D; Detwiler S; Goldman MP
    Lasers Surg Med; 2008 Aug; 40(6):402-6. PubMed ID: 18649385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of wavelengths for laser lipolysis.
    Wassmer B; Zemmouri J; Rochon P; Mordon S
    Photomed Laser Surg; 2010 Apr; 28(2):185-8. PubMed ID: 19803718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.
    Youn JI; Sweet P; Peavy GM
    Lasers Surg Med; 2007 Apr; 39(4):332-40. PubMed ID: 17457836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo laser lipolysis assisted with radially diffusing optical applicator.
    Hwang J; Hau NT; Park SY; Rhee YH; Ahn JC; Kang HW
    J Biomed Opt; 2016 May; 21(5):58001. PubMed ID: 27207114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation.
    Evers M; Ha L; Casper M; Welford D; Kositratna G; Birngruber R; Manstein D
    Lasers Surg Med; 2018 Sep; 50(9):961-972. PubMed ID: 29799127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Comparison of Thermal Effects of a 1940-nm Tm:fiber Laser and 980-nm Diode Laser on Cortical Tissue: Stereotaxic Laser Brain Surgery.
    Tunc B; Gulsoy M
    Lasers Surg Med; 2020 Mar; 52(3):235-246. PubMed ID: 31592541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of thermodynamic bioeffects of long-pulsed 1064 nm laser in the photothermal lipolysis.
    Wu S; Jiang Z; Dong J; Yao M
    Lasers Surg Med; 2024 Jan; 56(1):90-99. PubMed ID: 38018661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of three separate clinical studies evaluating the safety and efficacy of laser-assisted lipolysis using 1,064, 1,320 nm, and a combined 1,064/1,320 nm multiplex device.
    Woodhall KE; Saluja R; Khoury J; Goldman MP
    Lasers Surg Med; 2009 Dec; 41(10):774-8. PubMed ID: 20014258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro investigation of wavelength-dependent tissue ablation: laser prostatectomy between 532 nm and 2.01 microm.
    Kang HW; Kim J; Peng YS
    Lasers Surg Med; 2010 Mar; 42(3):237-44. PubMed ID: 20333741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Assessment of a Carbon Monoxide Laser and a Thulium Fiber Laser for Fractional Ablation of Skin.
    Ha L; Jaspan M; Welford D; Evers M; Kositratna G; Casper MJ; Manstein D; Birngruber R
    Lasers Surg Med; 2020 Oct; 52(8):788-798. PubMed ID: 31943251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histologic and photonic evaluation of a pulsed Nd:YAG laser for ablation of subcutaneous adipose tissue.
    Ichikawa K; Tanino R; Wakaki M
    Tokai J Exp Clin Med; 2006 Dec; 31(4):136-40. PubMed ID: 21302242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive histologic analysis of interstitial lipolysis with the 1444 nm wavelength during a 3-month follow-up.
    Lim SD; Youn JI; Kim WS; Kim IH; Hwang TS; Han HS; Yeo UC
    Histol Histopathol; 2011 Nov; 26(11):1375-82. PubMed ID: 21938674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of tissue thermal effects from 1064/1320-nm laser-assisted lipolysis and its clinical implications.
    DiBernardo BE; Reyes J; Chen B
    J Cosmet Laser Ther; 2009 Jun; 11(2):62-9. PubMed ID: 19484812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipolysis using a 980-nm diode laser: a retrospective analysis of 534 procedures.
    Reynaud JP; Skibinski M; Wassmer B; Rochon P; Mordon S
    Aesthetic Plast Surg; 2009 Jan; 33(1):28-36. PubMed ID: 18972152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pilot study of the efficacy of a 1,064 and 1,320 nm sequentially firing Nd:YAG laser device for lipolysis and skin tightening.
    McBean JC; Katz BE
    Lasers Surg Med; 2009 Dec; 41(10):779-84. PubMed ID: 20014254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser lipolysis using a 1064/1319-nm blended wavelength laser and internal temperature monitoring.
    Salzman MJ
    Semin Cutan Med Surg; 2009 Dec; 28(4):220-5. PubMed ID: 20123420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.