These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22534756)
1. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Liu X; Wang F; Wang Q Phys Chem Chem Phys; 2012 Jun; 14(22):7894-911. PubMed ID: 22534756 [TBL] [Abstract][Full Text] [Related]
2. Photoanodes based on nanostructured WO3 for water splitting. Tacca A; Meda L; Marra G; Savoini A; Caramori S; Cristino V; Bignozzi CA; Gonzalez Pedro V; Boix PP; Gimenez S; Bisquert J Chemphyschem; 2012 Aug; 13(12):3025-34. PubMed ID: 22532437 [TBL] [Abstract][Full Text] [Related]
3. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Xi G; Yue B; Cao J; Ye J Chemistry; 2011 Apr; 17(18):5145-54. PubMed ID: 21432916 [TBL] [Abstract][Full Text] [Related]
4. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting. Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862 [TBL] [Abstract][Full Text] [Related]
5. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator. Abe R; Higashi M; Domen K ChemSusChem; 2011 Feb; 4(2):228-37. PubMed ID: 21275062 [TBL] [Abstract][Full Text] [Related]
6. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Hisatomi T; Kubota J; Domen K Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305 [TBL] [Abstract][Full Text] [Related]
9. Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles. Dias P; Lopes T; Meda L; Andrade L; Mendes A Phys Chem Chem Phys; 2016 Feb; 18(7):5232-43. PubMed ID: 26813492 [TBL] [Abstract][Full Text] [Related]
10. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. Zhang J; Liu Z; Liu Z ACS Appl Mater Interfaces; 2016 Apr; 8(15):9684-91. PubMed ID: 27032422 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Saito R; Miseki Y; Sayama K Chem Commun (Camb); 2012 Apr; 48(32):3833-5. PubMed ID: 22437791 [TBL] [Abstract][Full Text] [Related]
12. (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Maeda K Phys Chem Chem Phys; 2013 Jul; 15(26):10537-48. PubMed ID: 23337977 [TBL] [Abstract][Full Text] [Related]
13. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Lee DK; Lee D; Lumley MA; Choi KS Chem Soc Rev; 2019 Apr; 48(7):2126-2157. PubMed ID: 30499570 [TBL] [Abstract][Full Text] [Related]
14. Rapid anodic formation of high aspect ratio WO3 layers with self-ordered nanochannel geometry and use in photocatalysis. Wei W; Shaw S; Lee K; Schmuki P Chemistry; 2012 Nov; 18(46):14622-6. PubMed ID: 23042381 [TBL] [Abstract][Full Text] [Related]
15. WO Jeon D; Kim N; Bae S; Han Y; Ryu J ACS Appl Mater Interfaces; 2018 Mar; 10(9):8036-8044. PubMed ID: 29462556 [TBL] [Abstract][Full Text] [Related]
16. Influence of annealing temperature of WO3 in photoelectrochemical conversion and energy storage for water splitting. Ng C; Ng YH; Iwase A; Amal R ACS Appl Mater Interfaces; 2013 Jun; 5(11):5269-75. PubMed ID: 23731030 [TBL] [Abstract][Full Text] [Related]
17. High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation. Zhang L; Gao Y; Ding X; Yu Z; Sun L ChemSusChem; 2014 Oct; 7(10):2801-4. PubMed ID: 25139154 [TBL] [Abstract][Full Text] [Related]
18. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Spurgeon JM; Velazquez JM; McDowell MT Phys Chem Chem Phys; 2014 Feb; 16(8):3623-31. PubMed ID: 24435160 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Bignozzi CA; Caramori S; Cristino V; Argazzi R; Meda L; Tacca A Chem Soc Rev; 2013 Mar; 42(6):2228-46. PubMed ID: 23223715 [TBL] [Abstract][Full Text] [Related]
20. Bi(2) WO(6) inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. Zhang L; Baumanis C; Robben L; Kandiel T; Bahnemann D Small; 2011 Oct; 7(19):2714-20. PubMed ID: 21861296 [No Abstract] [Full Text] [Related] [Next] [New Search]