These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22534756)

  • 21. Visible light-induced charge storage, on-demand release and self-photorechargeability of WO3 film.
    Ng C; Ng YH; Iwase A; Amal R
    Phys Chem Chem Phys; 2011 Aug; 13(29):13421-6. PubMed ID: 21706080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of nanovoid Bi(2)WO(6) 2D ordered arrays as photoanodes for photoelectrochemical water splitting.
    Zhang L; Bahnemann D
    ChemSusChem; 2013 Feb; 6(2):283-90. PubMed ID: 23325719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting.
    Ishihara H; Kannarpady GK; Khedir KR; Woo J; Trigwell S; Biris AS
    Phys Chem Chem Phys; 2011 Nov; 13(43):19553-60. PubMed ID: 21970978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte.
    Solarska R; Jurczakowski R; Augustynski J
    Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting.
    Kim JY; Youn DH; Kim JH; Kim HG; Lee JS
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14123-9. PubMed ID: 26046296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes.
    Georgieva J; Valova E; Armyanov S; Philippidis N; Poulios I; Sotiropoulos S
    J Hazard Mater; 2012 Apr; 211-212():30-46. PubMed ID: 22172459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers.
    Zhang K; Shi XJ; Kim JK; Park JH
    Phys Chem Chem Phys; 2012 Aug; 14(31):11119-24. PubMed ID: 22772604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting.
    Kang D; Kim TW; Kubota SR; Cardiel AC; Cha HG; Choi KS
    Chem Rev; 2015 Dec; 115(23):12839-87. PubMed ID: 26538328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO
    Corby S; Francàs L; Kafizas A; Durrant JR
    Chem Sci; 2020 Feb; 11(11):2907-2914. PubMed ID: 34122791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water splitting with silver chloride photoanodes and amorphous silicon solar cells.
    Currao A; Reddy VR; van Veen MK; Schropp RE; Calzaferri G
    Photochem Photobiol Sci; 2004; 3(11-12):1017-25. PubMed ID: 15570389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triple-layered nanostructured WO₃ photoanodes with enhanced photocurrent generation and superior stability for photoelectrochemical solar energy conversion.
    Qi H; Wolfe J; Wang D; Fan HJ; Fichou D; Chen Z
    Nanoscale; 2014 Nov; 6(22):13457-62. PubMed ID: 25307270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping.
    Cesar I; Kay A; Gonzalez Martinez JA; Grätzel M
    J Am Chem Soc; 2006 Apr; 128(14):4582-3. PubMed ID: 16594689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis.
    Zhang X; Lu X; Shen Y; Han J; Yuan L; Gong L; Xu Z; Bai X; Wei M; Tong Y; Gao Y; Chen J; Zhou J; Wang ZL
    Chem Commun (Camb); 2011 May; 47(20):5804-6. PubMed ID: 21487607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.
    Hu D; Diao P; Xu D; Xia M; Gu Y; Wu Q; Li C; Yang S
    Nanoscale; 2016 Mar; 8(11):5892-901. PubMed ID: 26912373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation.
    Liu Q; He J; Yao T; Sun Z; Cheng W; He S; Xie Y; Peng Y; Cheng H; Sun Y; Jiang Y; Hu F; Xie Z; Yan W; Pan Z; Wu Z; Wei S
    Nat Commun; 2014 Oct; 5():5122. PubMed ID: 25283754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting.
    Higashi M; Domen K; Abe R
    J Am Chem Soc; 2013 Jul; 135(28):10238-41. PubMed ID: 23808352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermally stable N2-intercalated WO3 photoanodes for water oxidation.
    Mi Q; Ping Y; Li Y; Cao B; Brunschwig BS; Khalifah PG; Galli GA; Gray HB; Lewis NS
    J Am Chem Soc; 2012 Nov; 134(44):18318-24. PubMed ID: 23020149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The significant effect of heterojunction quality on photoelectrochemical water splitting in bilayer photoelectrodes: Rb(x)WO3 thin films on RbLaNb2O7 layers.
    Nakajima T; Nakamura T; Tsuchiya T
    Phys Chem Chem Phys; 2014 Dec; 16(48):26901-8. PubMed ID: 25377662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoelectrochemical Behavior of WO
    Jakubow-Piotrowska K; Kurzydlowski D; Wrobel P; Augustynski J
    ACS Phys Chem Au; 2022 Jul; 2(4):299-304. PubMed ID: 36855420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.