These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22534786)

  • 21. Flow cytometric analysis of the uptake of low-density lipoprotein by endothelial cells in microfluidic channels.
    van der Meer AD; Vermeul K; Poot AA; Feijen J; Vermes I
    Cytometry A; 2010 Oct; 77(10):971-5. PubMed ID: 21290471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The membrane chamber: a new type of in vitro recording chamber.
    Hill MR; Greenfield SA
    J Neurosci Methods; 2011 Jan; 195(1):15-23. PubMed ID: 21075142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macro- and microscale fluid flow systems for endothelial cell biology.
    Young EW; Simmons CA
    Lab Chip; 2010 Jan; 10(2):143-60. PubMed ID: 20066241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment.
    Young EW
    Integr Biol (Camb); 2013 Sep; 5(9):1096-109. PubMed ID: 23799587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microtechnology: meet neurobiology.
    Pearce TM; Williams JC
    Lab Chip; 2007 Jan; 7(1):30-40. PubMed ID: 17180203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in single-molecule detection on micro- and nano-fluidic devices.
    Liu C; Qu Y; Luo Y; Fang N
    Electrophoresis; 2011 Nov; 32(23):3308-18. PubMed ID: 22134976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineers are from PDMS-land, Biologists are from Polystyrenia.
    Berthier E; Young EW; Beebe D
    Lab Chip; 2012 Apr; 12(7):1224-37. PubMed ID: 22318426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic DNA amplification--a review.
    Zhang Y; Ozdemir P
    Anal Chim Acta; 2009 Apr; 638(2):115-25. PubMed ID: 19327449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity.
    van Midwoud PM; Verpoorte E; Groothuis GM
    Integr Biol (Camb); 2011 May; 3(5):509-21. PubMed ID: 21331391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in microfluidics-based experimental methods for neuroscience research.
    Park JW; Kim HJ; Kang MW; Jeon NL
    Lab Chip; 2013 Feb; 13(4):509-21. PubMed ID: 23306275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low density cell culture of locust neurons in closed-channel microfluidic devices.
    Göbbels K; Thiebes AL; van Ooyen A; Schnakenberg U; Bräunig P
    J Insect Physiol; 2010 Aug; 56(8):1003-9. PubMed ID: 20566412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microengineered physiological biomimicry: organs-on-chips.
    Huh D; Torisawa YS; Hamilton GA; Kim HJ; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2156-64. PubMed ID: 22555377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perspective: microfluidic applications in microbiology.
    Saleh-Lakha S; Trevors JT
    J Microbiol Methods; 2010 Jul; 82(1):108-11. PubMed ID: 20363265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel method of organotypic brain slice culture using connexin-specific antisense oligodeoxynucleotides to improve neuronal survival.
    Yoon JJ; Nicholson LF; Feng SX; Vis JC; Green CR
    Brain Res; 2010 Sep; 1353():194-203. PubMed ID: 20624376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The application of microfluidic devices for viral diagnosis in developing countries.
    Hattersley SM; Greenman J; Haswell SJ
    Methods Mol Biol; 2013; 949():285-303. PubMed ID: 23329450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippocampal slices in experimental and human epilepsy.
    Schwartzkroin PA
    Adv Neurol; 1986; 44():991-1010. PubMed ID: 3706029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.