These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22534787)

  • 1. Increased precision for analysis of protein-ligand dissociation constants determined from chemical shift titrations.
    Markin CJ; Spyracopoulos L
    J Biomol NMR; 2012 Jun; 53(2):125-38. PubMed ID: 22534787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.
    Markin CJ; Spyracopoulos L
    J Biomol NMR; 2012 Dec; 54(4):355-76. PubMed ID: 23086713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.
    Krishnamoorthy J; Yu VC; Mok YK
    PLoS One; 2010 Feb; 5(2):e8943. PubMed ID: 20174626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimethylsilyl tag for probing protein-ligand interactions by NMR.
    Becker W; Adams LA; Graham B; Wagner GE; Zangger K; Otting G; Nitsche C
    J Biomol NMR; 2018 Apr; 70(4):211-218. PubMed ID: 29564580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding.
    Huang R; Bonnichon A; Claridge TD; Leung IK
    Sci Rep; 2017 Mar; 7():43727. PubMed ID: 28256624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding mechanism of an SH3 domain studied by NMR and ITC.
    Demers JP; Mittermaier A
    J Am Chem Soc; 2009 Apr; 131(12):4355-67. PubMed ID: 19267471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principal component analysis of chemical shift perturbation data of a multiple-ligand-binding system for elucidation of respective binding mechanism.
    Konuma T; Lee YH; Goto Y; Sakurai K
    Proteins; 2013 Jan; 81(1):107-18. PubMed ID: 22927212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin.
    Shea MA; Sorensen BR; Pedigo S; Verhoeven AS
    Methods Enzymol; 2000; 323():254-301. PubMed ID: 10944756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling data from titration, amide H/D exchange, and mass spectrometry to obtain protein-ligand binding constants.
    Zhu MM; Rempel DL; Gross ML
    J Am Soc Mass Spectrom; 2004 Mar; 15(3):388-97. PubMed ID: 14998541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR.
    Chung WK; Freed AS; Holstein MA; McCallum SA; Cramer SM
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16811-6. PubMed ID: 20837551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR methods for the determination of protein-ligand dissociation constants.
    Fielding L
    Curr Top Med Chem; 2003; 3(1):39-53. PubMed ID: 12577990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability constants: comparative study of fitting methods. Determination of second-order complexation constants by (23)Na and (7)Li NMR chemical shift titration.
    Masiker MC; Mayne CL; Eyring EM
    Magn Reson Chem; 2006 Mar; 44(3):220-9. PubMed ID: 16477684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer.
    Latham MP; Zimmermann GR; Pardi A
    J Am Chem Soc; 2009 Apr; 131(14):5052-3. PubMed ID: 19317486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase.
    Shinya S; Ghinet MG; Brzezinski R; Furuita K; Kojima C; Shah S; Kovrigin EL; Fukamizo T
    J Biomol NMR; 2017 Apr; 67(4):309-319. PubMed ID: 28393280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring weak ligand-protein interactions by long-lived NMR states: improved contrast in fragment-based drug screening.
    Buratto R; Mammoli D; Chiarparin E; Williams G; Bodenhausen G
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11376-80. PubMed ID: 25196717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods.
    O'Shannessy DJ; Brigham-Burke M; Soneson KK; Hensley P; Brooks I
    Anal Biochem; 1993 Aug; 212(2):457-68. PubMed ID: 8214588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands.
    London RE
    J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallelized Ligand Screening Using Dissolution Dynamic Nuclear Polarization.
    Kim Y; Liu M; Hilty C
    Anal Chem; 2016 Nov; 88(22):11178-11183. PubMed ID: 27723298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.