BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 22535120)

  • 1. Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution.
    Matsuyama S; Kidani N; Mimura H; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K
    Opt Express; 2012 Apr; 20(9):10310-9. PubMed ID: 22535120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-dimensional Wolter optics with a sub-50 nm spatial resolution.
    Matsuyama S; Wakioka T; Kidani N; Kimura T; Mimura H; Sano Y; Nishino Y; Yabashi M; Tamasaku K; Ishikawa T; Yamauchi K
    Opt Lett; 2010 Nov; 35(21):3583-5. PubMed ID: 21042357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatility of a hard X-ray Kirkpatrick-Baez focus characterized by ptychography.
    Giewekemeyer K; Wilke RN; Osterhoff M; Bartels M; Kalbfleisch S; Salditt T
    J Synchrotron Radiat; 2013 May; 20(Pt 3):490-7. PubMed ID: 23592629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real space soft x-ray imaging at 10 nm spatial resolution.
    Chao W; Fischer P; Tyliszczak T; Rekawa S; Anderson E; Naulleau P
    Opt Express; 2012 Apr; 20(9):9777-83. PubMed ID: 22535070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achromatic and high-resolution full-field X-ray microscopy based on total-reflection mirrors.
    Matsuyama S; Emi Y; Kino H; Kohmura Y; Yabashi M; Ishikawa T; Yamauchi K
    Opt Express; 2015 Apr; 23(8):9746-52. PubMed ID: 25969013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy.
    Chao W; Kim J; Rekawa S; Fischer P; Anderson EH
    Opt Express; 2009 Sep; 17(20):17669-77. PubMed ID: 19907552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-energy x-ray microbeam with total-reflection mirror optics.
    Suzuki Y; Takeuchi A; Terada Y
    Rev Sci Instrum; 2007 May; 78(5):053713. PubMed ID: 17552831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors.
    Yamada J; Matsuyama S; Sano Y; Kohmura Y; Yabashi M; Ishikawa T; Yamauchi K
    Opt Express; 2019 Feb; 27(3):3429-3438. PubMed ID: 30732363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.
    Vila-Comamala J; Gorelick S; Färm E; Kewish CM; Diaz A; Barrett R; Guzenko VA; Ritala M; David C
    Opt Express; 2011 Jan; 19(1):175-84. PubMed ID: 21263555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors.
    Matsuyama S; Yasuda S; Yamada J; Okada H; Kohmura Y; Yabashi M; Ishikawa T; Yamauchi K
    Sci Rep; 2017 Apr; 7():46358. PubMed ID: 28406227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.
    Kimura T; Matsuyama S; Yamauchi K; Nishino Y
    Opt Express; 2013 Apr; 21(8):9267-76. PubMed ID: 23609637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified resolution redistribution system for frameless hologram display module.
    Takaki Y; Tanemoto Y
    Opt Express; 2010 May; 18(10):10294-300. PubMed ID: 20588883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument.
    Nesch I; Fogarty DP; Tzvetkov T; Reinhart B; Walus AC; Khelashvili G; Muehleman C; Chapman D
    Rev Sci Instrum; 2009 Sep; 80(9):093702. PubMed ID: 19791939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope.
    Yamada J; Matsuyama S; Sano Y; Yamauchi K
    Appl Opt; 2017 Feb; 56(4):967-974. PubMed ID: 28158101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halo suppression in full-field x-ray Zernike phase contrast microscopy.
    Vartiainen I; Mokso R; Stampanoni M; David C
    Opt Lett; 2014 Mar; 39(6):1601-4. PubMed ID: 24690848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes.
    Wang Y; Kumar K; Wang L; Zhang X
    Opt Express; 2012 Mar; 20(6):6657-68. PubMed ID: 22418549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrors.
    Yamauchi K; Mimura H; Kimura T; Yumoto H; Handa S; Matsuyama S; Arima K; Sano Y; Yamamura K; Inagaki K; Nakamori H; Kim J; Tamasaku K; Nishino Y; Yabashi M; Ishikawa T
    J Phys Condens Matter; 2011 Oct; 23(39):394206. PubMed ID: 21921317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry.
    Siewert F; Buchheim J; Boutet S; Williams GJ; Montanez PA; Krzywinski J; Signorato R
    Opt Express; 2012 Feb; 20(4):4525-36. PubMed ID: 22418212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics.
    Choi M; Lee S; Chang JH; Lee E; Jung KD; Kim W
    Opt Express; 2013 Jan; 21(2):1567-73. PubMed ID: 23389140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing.
    Liu W; Ice GE; Assoufid L; Liu C; Shi B; Khachatryan R; Qian J; Zschack P; Tischler JZ; Choi JY
    J Synchrotron Radiat; 2011 Jul; 18(Pt 4):575-9. PubMed ID: 21685674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.