BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22535207)

  • 1. A computational tool to detect and avoid redundancy in selected reaction monitoring.
    Röst H; Malmström L; Aebersold R
    Mol Cell Proteomics; 2012 Aug; 11(8):540-9. PubMed ID: 22535207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique ion signature mass spectrometry, a deterministic method to assign peptide identity.
    Sherman J; McKay MJ; Ashman K; Molloy MP
    Mol Cell Proteomics; 2009 Sep; 8(9):2051-62. PubMed ID: 19556279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry.
    Brusniak MY; Kwok ST; Christiansen M; Campbell D; Reiter L; Picotti P; Kusebauch U; Ramos H; Deutsch EW; Chen J; Moritz RL; Aebersold R
    BMC Bioinformatics; 2011 Mar; 12():78. PubMed ID: 21414234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of selected reaction monitoring peptide transitions via multiplexed product-ion scan modes.
    Cho BK; Koo YD; Kim K; Kang MJ; Lee YY; Kim Y; Park KS; Kim KP; Yi EC
    Rapid Commun Mass Spectrom; 2014 Apr; 28(7):773-80. PubMed ID: 24573808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SRMBuilder: a user-friendly tool for selected reaction monitoring data analysis.
    Sheng Q; Wu C; Su Z; Zeng R
    J Bioinform Comput Biol; 2011 Dec; 9 Suppl 1():51-62. PubMed ID: 22144253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sigpep: calculating unique peptide signature transition sets in a complete proteome background.
    Helsens K; Mueller M; Hulstaert N; Martens L
    Proteomics; 2012 Apr; 12(8):1142-6. PubMed ID: 22577015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational approaches to selected reaction monitoring assay design.
    Bessant C; Fan J
    Methods Mol Biol; 2013; 1007():219-35. PubMed ID: 23666728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
    Gallien S; Duriez E; Crone C; Kellmann M; Moehring T; Domon B
    Mol Cell Proteomics; 2012 Dec; 11(12):1709-23. PubMed ID: 22962056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How specific is my SRM?: The issue of precursor and product ion redundancy.
    Sherman J; McKay MJ; Ashman K; Molloy MP
    Proteomics; 2009 Mar; 9(5):1120-3. PubMed ID: 19253278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry.
    Maclean B; Tomazela DM; Abbatiello SE; Zhang S; Whiteaker JR; Paulovich AG; Carr SA; Maccoss MJ
    Anal Chem; 2010 Dec; 82(24):10116-24. PubMed ID: 21090646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development.
    Prakash A; Tomazela DM; Frewen B; Maclean B; Merrihew G; Peterman S; Maccoss MJ
    J Proteome Res; 2009 Jun; 8(6):2733-9. PubMed ID: 19326923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline.
    Keller A; Shteynberg D
    Methods Mol Biol; 2011; 694():169-89. PubMed ID: 21082435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein significance analysis in selected reaction monitoring (SRM) measurements.
    Chang CY; Picotti P; Hüttenhain R; Heinzelmann-Schwarz V; Jovanovic M; Aebersold R; Vitek O
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.014662. PubMed ID: 22190732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico design of targeted SRM-based experiments.
    Nahnsen S; Kohlbacher O
    BMC Bioinformatics; 2012; 13 Suppl 16(Suppl 16):S8. PubMed ID: 23176520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra.
    de Graaf EL; Altelaar AF; van Breukelen B; Mohammed S; Heck AJ
    J Proteome Res; 2011 Sep; 10(9):4334-41. PubMed ID: 21726076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry.
    Searle BC; Pino LK; Egertson JD; Ting YS; Lawrence RT; MacLean BX; Villén J; MacCoss MJ
    Nat Commun; 2018 Dec; 9(1):5128. PubMed ID: 30510204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments.
    Searle BC; Egertson JD; Bollinger JG; Stergachis AB; MacCoss MJ
    Mol Cell Proteomics; 2015 Sep; 14(9):2331-40. PubMed ID: 26100116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assessment of current bioinformatic solutions for analyzing LC-MS data acquired by selected reaction monitoring technology.
    Brusniak MY; Chu CS; Kusebauch U; Sartain MJ; Watts JD; Moritz RL
    Proteomics; 2012 Apr; 12(8):1176-84. PubMed ID: 22577019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry.
    Olsson N; James P; Borrebaeck CA; Wingren C
    Mol Cell Proteomics; 2012 Aug; 11(8):342-54. PubMed ID: 22543061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly multiplexed targeted proteomics using precise control of peptide retention time.
    Gallien S; Peterman S; Kiyonami R; Souady J; Duriez E; Schoen A; Domon B
    Proteomics; 2012 Apr; 12(8):1122-33. PubMed ID: 22577013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.